Acta mathematica scientia,Series A ›› 2016, Vol. 36 ›› Issue (3): 569-583.
Previous Articles Next Articles
Zhang Shuwen
Received:
2015-10-08
Revised:
2016-03-15
Online:
2016-06-26
Published:
2016-06-26
Supported by:
Supported by the NSFC (31272653, 11301216) and Fujian Provincial Science Foundation (2016J01667)
CLC Number:
Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching[J].Acta mathematica scientia,Series A, 2016, 36(3): 569-583.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Guo H J, Chen L S. The effects of impulsive harvest on a predator-prey system with distributed time delay. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5):2301-2309 |
[1] | Zhang Wenwen, Liu Zhijun, Wang Qinglong. Exponential Extinction, Stationary Distribution and Probability Density Function of A Stochastic Predator-Prey Model with Ornstein-Uhlenbeck Process [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1368-1379. |
[2] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[3] | Li Dan,Wei Fengying,Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1595-1606. |
[4] | Yanjun Zhao,Xiaohui Sun,Li Su,Wenxuan Li. Qualitative Analysis of Stochastic SIRS Epidemic Model with Logistic Growth and Beddington-DeAngelis Incidence Rate [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1861-1872. |
[5] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[6] | Liya Liu,Daqing Jiang. Global Dynamics of a Stochastic Chemostat Model with General Response Function and Wall Growth [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1912-1924. |
[7] | Xin Wu,Rong Yuan,Zhaohai Ma. Analysis on Critical Waves and Non-Critical Waves for Holling-Tanner Predator-Prey System with Nonlocal Diffusion [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1705-1717. |
[8] | Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221-233. |
[9] | Yingjie Fu,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics of a Stochastic Predator-Prey Model with Pulse Input in a Polluted Environment [J]. Acta mathematica scientia,Series A, 2019, 39(3): 674-688. |
[10] | Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[11] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[12] | Zhou Sen, Yang Zuodong. Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source [J]. Acta mathematica scientia,Series A, 2016, 36(3): 531-542. |
[13] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[14] | HU Guang-Ping, LI Xiao-Ling. Stationary Patterns of a Leslie-Gower Type Three Species Model with Cross-Diffusions [J]. Acta mathematica scientia,Series A, 2013, 33(1): 16-27. |
[15] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
|