Acta mathematica scientia,Series A ›› 2016, Vol. 36 ›› Issue (4): 722-739.
Previous Articles Next Articles
Yang Xinguang1, Zhao Mingxia2, Hou Wei3
Received:
2015-12-16
Revised:
2016-05-13
Online:
2016-08-26
Published:
2016-08-26
Supported by:
Support by the Mainstay Fund from Henan Normal University,the Foundation of Henan Educational Committee(15A110033) and the Program for Science and Technology Innovation Grant of Henan Province(142102210448)
CLC Number:
Yang Xinguang, Zhao Mingxia, Hou Wei. Upper Semi-Continuity of Pullback Attractors for the 2D Non-Autonomous Navier-Stokes Equations with Weak Damping[J].Acta mathematica scientia,Series A, 2016, 36(4): 722-739.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Arrieta J M, Carvalho A N, Bernal A R. Perturbation of the diffusion and upper semi-continuity of attractors. Appl Math Letter, 1999, 12: 37-42 |
[1] | Ni Siyan, Zou Tianfang, Zhao Caidi. Pullback Attractors and Invariant Measures for Retarded Lattice Reaction-Diffusion Equations [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1128-1143. |
[2] | Gong Simeng, Zhang Xueyao, Guo Zhenhua. The Existence of Global Strong Solution to the Compressible Axisymmetric Navier-Stokes Equations with Density-Dependent Viscosities [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1445-1475. |
[3] | Sun Xiaochun, Wu Yulian, Xu Gaoting. Global Well-Posedness for the Fractional Navier-Stokes Equations with the Coriolis Force [J]. Acta mathematica scientia,Series A, 2024, 44(3): 737-745. |
[4] | Liao Yuankang. Nonlinear Stability of Viscous Shock Waves for One-dimensional Isentropic Compressible Navier-Stokes Equations with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1149-1169. |
[5] | Jie Cao,Lan Huang,Keqin Su. The Convergence of Pullback Attractors for Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1173-1185. |
[6] | Tong Tang,Cong Niu. Global Existence of Weak Solutions to the Quantum Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 387-400. |
[7] | Qinghua Zhang,Yueping Zhu. Weighted Temporal-Spatial Estimates of the Stokes Semigroup with Applications to the Non-Stationary Navier-Stokes Equation in Half-Space [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1657-1670. |
[8] | Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404. |
[9] | Shangxi Guo. Existence of Global Strong Solutions for Initial Value Problems of One-Dimensional Compressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(3): 642-651. |
[10] | Mingyue Xu,Caidi Zhao,Caraballo Tomás. Degenerate Regularity of Trajectory Statistical Solutions for the 3D Incompressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(2): 336-344. |
[11] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Pullback Attractors for Navier-Stokes-Voigt Equations with Nonlinear Damping [J]. Acta mathematica scientia,Series A, 2021, 41(2): 357-369. |
[12] | Kaixuan Zhu,Yongqin Xie,Feng Zhou,Xijun Deng. Pullback Attractors for the Complex Ginzburg-Landau Equations with Delays [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1341-1353. |
[13] | Jianhua Huang,Zaiyun Zhang,Yong Chen. The Moderate Deviation Principle for Stochastic 3D LANS-α Model Driven by Multiplicative Lévy Noise [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1532-1544. |
[14] | Min Zhao,Shengfan Zhou. Random Attractor for Non-Autonomous Stochastic Boussinesq Lattice Equations with Additive White Noises [J]. Acta mathematica scientia,Series A, 2018, 38(5): 924-940. |
[15] | Wang Junli, Zhang Xingwei, Liu Jian. Instability of Plane Couette-Poiseuille Flow of Compressible Navier-Stokes Equation [J]. Acta mathematica scientia,Series A, 2018, 38(2): 322-333. |
|