Acta mathematica scientia,Series A ›› 2017, Vol. 37 ›› Issue (2): 326-341.
Previous Articles Next Articles
Duan Shuangshuang, Huang Shoujun
Received:
2016-07-12
Revised:
2016-12-23
Online:
2017-04-26
Published:
2017-04-26
Supported by:
CLC Number:
Duan Shuangshuang, Huang Shoujun. Blow up of Periodic Solutions for a Class of Keller-Segel Equations Arising in Biology[J].Acta mathematica scientia,Series A, 2017, 37(2): 326-341.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Keller E F,Segel L A.Initiation of slime mold aggregation viewed as an instability.Theoret Biol,1970,26:399-415 [2] Nagai T.Blow-up of radially symmetric solutions to a chemotaxis system.Adv Math Sci Appl,1995,5:581-601 [3] Rascle M.The Riemann problem for a nonlinear nonstrictly hyperbolic system arising in biology.Comput Math Appl,1985,11:223-238 [4] Winkler M.Aggregation vs.global diffusive behavior in the higher-dimensional Keller-Segel model.J Differential Equations,2010,12:2889-2905 [5] Zheng Y S.Globally smooth solutions to Cauchy problem of a quasilinear hyperbolic system arising in biology.Acta Math Sci,2001,21(4):460-468 [6] Perthame B.Dalabard A L.Existence of solutions of the hyperbolic Keller-Segel model.Trans Amer Math Soc,2009,361:2319-2335 [7] Xiang T.On a class of Keller-Segel chemotaxis systems with cross-diffusion.J Differential Equations,2015,295:4273-4326 [8] Li H C,Zhao K.Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis.J Differential Equations,2015,528:302-338 [9] Shi R K,Wang W K.The pointwise estimates of solutions to the Cauchy problem of a chemotaxis model.Chin Ann Math,2016,37B:111-124 [10] Shi R K,Wang W K.Well-posedness for a model derived from an attraction-repulsion chemotaxis system.J Math Anal Appl,2015,423:497-520 [11] Hittmeir S,Jüngel A.Cross diffusion preventing blow-up in the two-dimensional Keller-Segel model.SIAM J Math Anal,2011,43:997-1022 [12] Horstmann D.From 1970 until present:the Keller-Segel model in chemotaxis and its consequences.Jahresber Deutsch Math Verein,2004,2:51-69 [13] Bressan A.Open questions in the theory of one dimensional hyperbolic conservation laws.The IMA Volumes in Math Appl,2011,153:1-22 [14] Glimm J,Lax P D.Decay of solutions of systems of nonlinear hyperbolic conservation laws.Mem Am Math Soc,1970,101:1-112 [15] Klainerman S,Majda A.Formation of singularities for wave equations including the nonlinear vibrating.Comm Pure Appl Math,1980,247:1694-1719 [16] Colombini F,Del Santo D.Development of singularities for nonlinear hyperbolic systems with periodic data.Ann Univ Ferrara Sez VⅡ(N.S.),1997,XLI:15-28 [17] LeFloch P,Xin Z P.Formation of singularities in periodic solutions to gas dynamics equations.1993,Unpublished [18] Li T T,Kong D X.Blow up of periodic solution to quasilinear hyperbolic systems.Nonlinear Anal Theory Appl,1996,26:1779-1789 [19] Qu P,Xin Z P.Long time existence of entropy solutions to the one-dimensional non-isentropic Euler equations with periodic initial data.Arch Rational Mech Anal,2015,216:221-259 [20] Kong D X,Wang Z G.Formation of singularities in the motion of plane curves under hyperbolic mean curvature fow.J Differential Equations,2009,247:1694-1719 [21] Liu P,Shi J P,Wang Z A.Pattern formation of the attraction-repulsion Keller-Segel system.Discrete Contin Dyn Syst Ser B,2013,18:2597-2625 [22] Li D Q,Kong D X.Blow up of periodic solutions to quasilinear hyperbolic systems.Nonlinear Anal,1996,26:1779-1789 [23] Lax P D.Hyperbolic systems of conservation laws Ⅱ.Comm Pure Appl Math,1957,10:537-566 [24] Xiao J J.Some Topics on Hyperbolic Conservation Laws[D].Hong Kong:The Chinese University of Hong Kong,2008 |
[1] | Zeng Xiaping, Lu Wenwen, Pang Guoping, Liang Zhiqing. Single Population Dynamics Model of Fish with Seasonal Switching and Impulsive Perturbations [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1206-1216. |
[2] | Li Qian, Xing Yanyuan. Finite Time Blow up of Solutions for Nonlinear Wave Equation with the Damping Term at Arbitrarily Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2025, 45(3): 748-755. |
[3] | Li Bin,Xie Li. The Effects of Police Deployment in a Chemotaxis System with Singular Sensitivity for Criminal Activities [J]. Acta mathematica scientia,Series A, 2025, 45(2): 512-533. |
[4] | Ren Chenchen, Yang Sudan. Existence and Uniqueness of Solutions for Sub-Linear Heat Equations with Almost Periodic Coefficients [J]. Acta mathematica scientia,Series A, 2025, 45(1): 31-43. |
[5] |
Lou Yu, Zhang Yi.
Breather and Rogue Wave on the Periodic/Double Periodic Background and Interaction Solutions of the Generalized Derivative Nonlinear Schr |
[6] |
Qian Yuting, Zhou Xueliang, Cheng Zhibo.
Existence of Periodic Solutions for |
[7] |
Qian Yuting, Zhou Xueliang, Cheng Zhibo.
Existence of Periodic Solutions for |
[8] | Yin Ruixia, Wang Zedong, Zhang Long. A Periodic Stage Structure Single-Population Model with Infinite Delay and Feedback Control [J]. Acta mathematica scientia,Series A, 2024, 44(4): 994-1011. |
[9] | Yang Jiaopeng, Liang Yong. Solitary and Periodic Solutions of the Generalized b-equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 670-686. |
[10] | He Fen, Wang Zhen. Riemann Problem for a Class of Mixed-type Chemotaxis Models [J]. Acta mathematica scientia,Series A, 2024, 44(2): 354-360. |
[11] | Wang Zihuan,Wang Chao. Symmetric and Periodic Solutions for a Class of Weakly Coupled Systems Composed of Two Particles with Obstacles [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1427-1439. |
[12] | Cai Senlin,Zhou Shouming,Chen Rong. On the Cauchy Problem for a Shallow Water Regime of Waves with Large Amplitude [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1197-1120. |
[13] | Wang Zenggui. Cauchy Problem for the Evolution of Cells and Tissue During Curvature-Controlled Growth [J]. Acta mathematica scientia,Series A, 2023, 43(3): 771-784. |
[14] | Song Huijuan, Huang Qian, Wang Zejia. Asymptotic Analysis of a Tumor Model with Angiogenesis and a Periodic Supply of External Nutrients [J]. Acta mathematica scientia,Series A, 2023, 43(1): 261-273. |
[15] | Shan Yuan. Relative Morse Index and Multiple Solutions for Asymptotically Linear Dirac Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 69-81. |
|