Acta mathematica scientia,Series A ›› 2017, Vol. 37 ›› Issue (2): 366-373.
Previous Articles Next Articles
Zhou Jun
Received:
2016-06-14
Revised:
2016-10-18
Online:
2017-04-26
Published:
2017-04-26
Supported by:
CLC Number:
Zhou Jun. Turing Instability and Hopf Bifurcation of a Bimolecular Model with Autocatalysis and Saturation Law[J].Acta mathematica scientia,Series A, 2017, 37(2): 366-373.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Bonilla L L,Velarde M G.Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law.J Math Phys,1979,20(12):2692-2703 [2] Doelman A,Kaper T J,Zegeling P A.Pattern formation in the one-dimensional Gray-Scott model.Nonlinearity,1997,10(2):523-563 [3] Du L,Wang M X.Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model.J Math Anal Appl,2010,366(2):473-485 [4] Ghergu M.Non-constant steady-state solutions for Brusselator type systems.Nonlinearity,2008,21(10):2331-2345 [5] Hassard B D,Kazarinoff N D,Wan Y H.Theory and Applications of Hopf Bifurcation.Cambridge:Cambridge University Press,1981 [6] Ibanez J L,Velarde M G.Multiple steady states in a simple reaction-diffusion model with michaelis-menten(first-order hinshelwood-langmuir) saturation law:The limit of large separation in the two diffusion constants.J Math Phy,1978,19(1):151-156 [7] Jin J Y,Shi J P,Wei J J,Yi F Q.Bifurcations of patterned solutions in diffusive lengyel-epstein system of cima chemical reaction.R Moun J Math,2013,43(5):1637-1674 [8] Kolokolnikov T,Erneux T,Wei J.Mesa-type patterns in the one-dimensional Brusselator and their stability.Phys D,2006,214(1):63-77 [9] Lengyel I,Epstein I R.Diffusion-induced instability in chemically reacting systems:steady-state multiplicity,oscillation,and chaos.Chaos,1991,1(1):69-76 [10] McGough J S,Riley K.Pattern formation in the Gray-Scott model.Nonlinear Anal Real World Appl,2004,5(1):105-121 [11] Ni W M.Qualitative properties of solutions to elliptic problems.Handbook of Differential Equations Stationary Partial Differential Equations,2004,1:157-233 [12] Peng R,Shi J P,Wang M X.On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law.Nonlinearity,2008,21(7):1471-1488 [13] Peng R,Sun F Q.Turing pattern of the Oregonator model.Nonlinear Anal,2010,72(5):2337-2345 [14] Peng R,Yi F Q.On spatiotemporal pattern formation in a diffusive bimolecular model.Discrete Contin Dyn Syst Ser B,2011,15(1):217-230 [15] Song Y L,Zou X F.Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point.Comp Math Appl,2014,67(10):1978-1997 [16] Turing A M.The chemical basis of morphogenesis.P Tran Roy Soc London Ser B Bio Sci,1952,237(641):37-72 [17] Wang J F,Shi J P,Wei J J.Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey.J Differential Equations,2011,251(4/5):1276-1304 [18] Wang J F,Wei J J,Shi J P.Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems.J Differential Equations,2016,260(4):3495-3523 [19] Wei J C.Pattern formations in two-dimensional Gray-Scott model:existence of single-spot solutions and their stability.Phys D,2001,148:20-48 [20] Wiggins S,Golubitsky M.Introduction to Applied Nonlinear Dynamical Systems and Chaos:Volume 2.New York:Springer,1990 [21] Yi F Q,Liu J X,Wei J J.Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model.Nonlinear Anal Real World Appl,2010,11(5):3770-3781 [22] Yi F Q,Wei J J,Shi J P.Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system.J Differential Equations,2009,246(5):1944-1977 [23] Zhou J.Bifurcation analysis of the oregonator model.Appl Math Letters,2016,52:192-198 [24] Zhou J,Mu C L.Pattern formation of a coupled two-cell Brusselator model.J Math Anal Appl,2010,366(2):679-693 [25] Zhou J.Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type Ⅲ functional response.Nonlinear Dyn,2015,81(3):1535-1552 |
[1] | Xiao Jianglong, Song Yongli, Xia Yonghui. Spatiotemporal Dynamics Induced by the Interaction Between Fear and Schooling Behavior in a Diffusive Model [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1577-1594. |
[2] | Ma Yani, Yuan Hailong. Bifurcation Analysis of a Class of Gierer-Meinhardt Activation Inhibition Model with Time Delay [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1774-1788. |
[3] | Rui Xu,Yan Yang. Dynamics of an HTLV-I Infection Model with Delayed and Saturated CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1836-1848. |
[4] | Daoxiang Zhang,Ben Li,Dandan Chen,Yating Lin,Xinmei Wang. Hopf Bifurcation for a Fractional Differential-Algebraic Predator-Prey System with Time Delay and Economic Profit [J]. Acta mathematica scientia,Series A, 2022, 42(2): 570-582. |
[5] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[6] | Jingnan Wang,Dezhong Yang. Stability and Bifurcation of a Pathogen-Immune Model with Delay and Diffusion Effects [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1204-1217. |
[7] | Gaihui Guo,Xiaohui Liu. Hopf Bifurcation and Stability for an Autocatalytic Reversible Biochemical Reaction Model [J]. Acta mathematica scientia,Series A, 2021, 41(1): 166-177. |
[8] | Haiyin Li. Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model [J]. Acta mathematica scientia,Series A, 2019, 39(2): 358-371. |
[9] | Yang Jihua, Zhang Erli, Liu Mei. Dynamic Analysis and Chaos Control of a Finance System with Delayed Feedbacks [J]. Acta mathematica scientia,Series A, 2017, 37(4): 767-782. |
[10] | Yang Wenbin, Wu Jianhua. Some Dynamics in Spatial Homogeneous and Inhomogeneous Activator-Inhibitor Model [J]. Acta mathematica scientia,Series A, 2017, 37(2): 390-400. |
[11] | Wang Heyuan. The Dynamical Behaviors and the Numerical Simulation of a Five-Mode Lorenz-Like System of the MHD Equations for a Two-Dimensional Incompressible Fluid on a Torus [J]. Acta mathematica scientia,Series A, 2017, 37(1): 199-216. |
[12] | Wan Aying, Yi Fengqi, Zheng Lifei. Hopf Bifurcation Analysis and Oscillatory Patterns of A Diffusive Gierer-Meinhardt Model [J]. Acta mathematica scientia,Series A, 2015, 35(2): 381-394. |
[13] | WANG Xue-Chen, WEI Jun-Jie. The Effect of Delay on a Diffusive Predator-Prey System with Ivlev-Type Functional Response [J]. Acta mathematica scientia,Series A, 2014, 34(2): 234-250. |
[14] |
Xu Weijian;.
Stability and Hopf Bifurcation of an SIS Model with Species Logistic Growth and Saturating Infect Rate [J]. Acta mathematica scientia,Series A, 2008, 28(3): 578-584. |
[15] | Wang Yuquan; Liu Laifu. On the Dynamics of a Food Chain with Monod-Haldane Functional Response [J]. Acta mathematica scientia,Series A, 2007, 27(1): 79-089. |
|