Acta mathematica scientia,Series A ›› 2017, Vol. 37 ›› Issue (3): 469-477.
Previous Articles Next Articles
Xiong Jun, Li Junmin, He Chao
Received:
2016-05-26
Revised:
2016-09-13
Online:
2017-06-26
Published:
2017-06-26
Supported by:
CLC Number:
Xiong Jun, Li Junmin, He Chao. Fuzzy Boundary Control Design for a Class of First-Order Hyperbolic PDEs[J].Acta mathematica scientia,Series A, 2017, 37(3): 469-477.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Deng H, Li H X, Chen G. Spectral-approximation-based intelligent modeling for distributed thermal processes. Control Systems Technology, IEEE Transactions on, 2005, 13(5):686-700 [2] Christofides P D. Nonlinear and Robust Control of PDE Systems:Methods and Applications to TransportReaction Processes. Boston:Birkhauser, 2001 [3] Ray W H. Advanced Process Control. New York, USA:McGraw-Hill Companies, 1981 [4] Padhi R, Ali S F. An account of chronological developments in control of distributed parameter systems. Annual Reviews in Control, 2009, 33(1):59-68 [5] Li H X, Qi C. Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems:A Time/Space Separation Based Approach. Dordrecht:Springer Science and Business Media, 2011 [6] Wu H N, Wang J W, Li H X. Fuzzy boundary control design for a class of nonlinear parabolic distributed parameter systems. IEEE Transactions on Fuzzy Systems, 2014, 22(3):642-652 [7] Triggiani R. Boundary feedback stabilizability of parabolic equations. Applied Mathematics and Optimization, 1980, 6(1):201-220 [8] Lasiecka I, Triggiani R. Control Theory for Partial Differential Equations:Volume 1, Abstract Parabolic Systems:Continuous and Approximation Theories. Cambridge:Cambridge University Press, 2000 [9] Boskovic D M, Krstic M, Liu W. Boundary control of an unstable heat equation via measurement of domain-averaged temperature. IEEE Transactions on Automatic Control, 2001, 46(12):2022-2028 [10] Liu W J. Boundary feedback stabilization of an unstable heat equation. SIAM Journal on Control and Optimization, 2003, 42(3):1033-1043 [11] Smyshlyaev A, Krstic M. Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Transactions on Automatic Control, 2004, 49(12):2185-2202 [12] Wu H N, Li H X. Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on, 2007, 37(5):1422-1430 [13] Wu H N, Li H X. H-infinity fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints. IEEE Transactions on Fuzzy Systems, 2008, 16(2):502-516 [14] Chen B S, Chang Y T. Fuzzy state-space modeling and robust observer-based control design for nonlinear partial differential systems. IEEE Transactions on Fuzzy Systems, 2009, 17(5):1025-1043 [15] Wu H N, Wang J W, Li H X. Exponential stabilization for a class of nonlinear parabolic PDE systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 2012, 20(2):318-329 [16] Wang J W, Wu H N, Li H X. Distributed proportional-spatial derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2012, 42(3):927-938 [17] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 1985, (1):116-132 [18] Tanaka K, Wang H O. Fuzzy Control Systems Design and Analysis:A Linear Matrix Inequality Approach. New York:Wiley, 2001 [19] Zwart H J, Curtain R F. An Introduction to Infinite Dimensional Linear Systems Theory. New York:Springer-Verlag, 1995 [20] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York:Springer Verlag, 1983 [21] Ghaoui L EI, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia:Society for Industrial and Applied Mathematics, 1994 [22] Gahinet P M, Nemirovskii A, Laub A J, Chilali M. The LMI Control Toolbox. Natick:The Math Works Inc, 1994 [23] Wang J W, Wu H N, Li H X. Fuzzy control design for nonlinear ODE-hyperbolic PDE-cascaded systems:a Fuzzy and Entropy-like Lyapunov function approach. IEEE Transactions on Fuzzy Systems, 2014, 22(5):1313-1324 |
[1] | Zhang Chunguo, Sun Baonan, Fu Yuzhi, Yu Xin. Stabilization of 2-D Mindlin Timoshenko Plate Systems with Local Damping [J]. Acta mathematica scientia,Series A, 2024, 44(4): 946-959. |
[2] | Gao Caixia, Zhao Dongxia. The Delayed Control and Input-to-State Stability of ARZ Traffic Flow Model with Disturbances [J]. Acta mathematica scientia,Series A, 2024, 44(4): 960-977. |
[3] | Pang Yuting, Zhao Dongxia. The PDP Feedback Control and Exponential Stabilization of a Star-Shaped Open Channels Network System [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1803-1813. |
[4] |
Pang Yuting,Zhao Dongxia,Zhao Xin,Gao Caixia.
The PDP Boundary Control for a Class of 2 |
[5] | He Xuyang,Mao Mingzhi,Zhang Tengfei. Existence and Stability of a Class of Impulsive Neutral Stochastic Functional Differential Equations with Poisson Jump [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1221-1243. |
[6] | Dongxia Fan,Dongxia Zhao,Na Shi,Tingting Wang. The PDP Feedback Control and Stability Analysis of a Diffusive Wave Equation [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1088-1096. |
[7] | Xingshou Huang,Ricai Luo,Wusheng Wang. Stability Analysis for a Class Neural Network with Proportional Delay Based on the Gronwall Integral Inequality [J]. Acta mathematica scientia,Series A, 2020, 40(3): 824-832. |
[8] | Chao Yang,Runjie Li. Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting [J]. Acta mathematica scientia,Series A, 2019, 39(4): 785-796. |
[9] | Zhang Liping, Liu Dongyi, Zhang Guoshan. Exponential Stabilization of a Timoshenko Beam System with Internal Disturbances [J]. Acta mathematica scientia,Series A, 2017, 37(1): 185-198. |
[10] | Huang Zuda. Positive Pseudo Almost Periodic Solutions for a Delayed Nicholson's Blowflies Model with a Feedback Control [J]. Acta mathematica scientia,Series A, 2016, 36(3): 558-568. |
[11] | Jiang Ani. Pseudo Almost Periodic Solutions for a Model of Hematopoiesis with an Oscillating Circulation Loss Rate [J]. Acta mathematica scientia,Series A, 2016, 36(1): 80-89. |
[12] |
QIN Yu-Ming, LI Hai-Yan.
GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SOLUTIONS TO THE QUASILINEAR THERMO-DIFFUSION EQUATIONS WITH SECOND SOUND [J]. Acta mathematica scientia,Series A, 2014, 34(3): 759-778. |
[13] | ZHANG Yu-Tian, LUO Qi. Global Exponential Stability of Impulsive Reaction-Diffusion Cellular Neural Networks with Time-Varying Delays and Neumann Boundary Condition [J]. Acta mathematica scientia,Series A, 2013, 33(4): 777-786. |
[14] | ZHANG Chun-Guo. Stability for the Nonhomogeneous Timoshenko Beam with Local Memory Damping [J]. Acta mathematica scientia,Series A, 2012, 32(1): 186-200. |
[15] | ZHANG Ruo-Jun, WANG Lin-Shan. Almost Periodic Solutions for Cellular Neural Networks with Distributed Delays [J]. Acta mathematica scientia,Series A, 2011, 31(2): 422-429. |
|