Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (4): 649-657.
Previous Articles Next Articles
Cao Jianbing
Received:
2017-02-21
Revised:
2017-10-29
Online:
2018-08-26
Published:
2018-08-26
Supported by:
CLC Number:
Cao Jianbing. Perturbation Analysis for Constrained Extremal Solution Problems in Reflexive Strictly Convex Banach Spaces[J].Acta mathematica scientia,Series A, 2018, 38(4): 649-657.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Cao J B, Xue Y F. On the simplest expression of the perturbed Moore-Penrose metric generalized inverse. Ann Univ Buchar Math, 2013, 4:1-14 |
[2] | Cao J B, Zhang W Q. Perturbation of the Moore-Penrose metric generalized inverse in reflexive strictly convex Banach spaces. Acta Math Sin, 2016, 32:725-735 |
[3] | Cao J B, Xue Y F. Perturbation analysis of the algebraic metric generalized inverse in Lp(Ω, μ). Numer Funct Anal Optim, 2017, 38:1624-1643 |
[4] | Chen G L, Xue Y F. Perturbation analysis for the operator equation T x=b in Banach spaces. J Math Anal Appl, 1997, 212:107-125 |
[5] | Chen G L, Wei Y M, Xue Y F. Perturbation analysis of the least square solution in Hilbert spaces. Linear Algebra Appl, 1996, 244:69-80 |
[6] | Ding J. Perturbation bounds for least squares problems with equality constraints. J Math Anal Appl, 1999, 229:631-638 |
[7] | Ding J. Lower and upper bounds in the perturbation of generallinear algebraic equations. Appl Math Lett, 2001, 20:49-52 |
[8] | Ding J. On the existence of solutions to equality constrained least-squares problems in infinite dimensional Hilbert spaces. Appl Math Comput, 2002, 131:573-581 |
[9] | Ding J. Lower and upper bounds in the perturbation of general linear algebraic equations. Appl Math Lett, 2004, 17:55-58 |
[10] | Ding J, Huang W. New perturbation results for equality constrained least squares problems. Linear Algebra Appl, 1998, 272:181-192 |
[11] | Du F P. Perturbation analysis for the Moore-Penrose metric generalized inverse of bounded linear operators. Banach J Math Anal, 2015, 9:100-114 |
[12] | Hudzik H, Y Wang Y W et al. Criteria for the metric generalized inverse and its selections in Banach spaces. Set-Valued Var Anal, 2008, 16:51-65 |
[13] | Kreyszig E. Introductory Functional Analysis with Applications. New York:Wiley, 1978 |
[14] | Liu P, Wang Y W. The best generalized inverse of the linear operator in normed linear space. Linear Algebra Appl, 2007, 420:9-19 |
[15] | Ma H F, Sun Sh et al. Perturbations of Moore-Penrose metric generalized inverses of linear operators in Banach spaces. Acta Math Sin, 2014, 30:1109-1124 |
[16] | Ma H F, Hudzik H et al. Continuous homogeneous selections of set-valued metric generalized inverses of linear operators in Banach spaces. Acta Math Sin, 2012, 28:45-56 |
[17] | Nashed M Z, Votruba G F. A unified approach to generalized inverses of linear operators:Ⅱ, Extremal and proximal properties. Bull Amer Math Soc, 1974, 80:831-835 |
[18] | Ni R X. Moore-Penrose metric generalized inverses of linear operators in arbitrary Banach spaces. Acta Math Sin, 2006, 49:1247-1252 |
[19] | Shang S, Cui Y A. Approximative compactness and continuity of the set-valued metric generalized inverse in Banach space. J Math App, 2015, 422:1363-1375 |
[20] | Singer I. The Theory of Best Approximation and Functional Analysis. New York:Springer-Verlag, 1970 |
[21] | Wang Y W, Wang Z. A new perturbation theorem for Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces. Acta Math Sci, 2017, 6:1619-1631 |
[22] | Wang Y W. Generalized Inverse of Operator in Banach Spaces and Applications. Beijing:Science Press, 2005 |
[23] | Wang Y W, Yu J F. The character and representive of a class of metric projection in Banach space. Acta Math Sci, 2001, 1:29-35 |
[24] | Wang Y W, Yu J F. The minimal norm extrimal solution to the non-homogeneous ill-posed boundary value problem in Banach Space Lp(Ω). Acta Math Sci, 2001, 2:191-200 |
[25] | Wang H, Wang Y W. Metric generalized inverse of linear operator in Banach space. Chin Ann Math, 2003, 24:509-520 |
[26] | Xue Y F. Stable Perturbations of Operators and Related Topics. Singapore:World Scientific, 2012 |
[1] | Zheng Yanping, Shen Jianhe. Traveling Fronts in a Social Tension-Outbursts Multi-Scale Reaction-Diffusion Equation with Allee Effect [J]. Acta mathematica scientia,Series A, 2025, 45(3): 776-789. |
[2] | Chen Xuejiao, Li Dandan, Shi Jincheng, Zeng Peng. Continuous Dependence of Harmonic Equations on Base Perturbation in Prismatic Cylinder [J]. Acta mathematica scientia,Series A, 2025, 45(1): 101-109. |
[3] | Zhang Shengliang, Qian Yanyan. Application of Cubic MQ Quasi-Interpolation in Derivative Approximations Under Random Perturbation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 180-188. |
[4] |
Wei Huaquan, Wu Hui, Liu Xiaoji, Jin Hongwei.
Properties and Computations of the |
[5] | Liao Yuankang. Nonlinear Stability of Viscous Shock Waves for One-dimensional Isentropic Compressible Navier-Stokes Equations with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1149-1169. |
[6] | Gui Kunming,Tao Hongshan,Yang Jun. Normalized Ground States for the Quasi-linear Schrödinger Equation with Combined Nonlinearities [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1062-1072. |
[7] | Li Min, Pu Xueke. Long-Wavelength Limit for the Two-Fluid Euler-Poisson Equation [J]. Acta mathematica scientia,Series A, 2023, 43(2): 399-420. |
[8] | Jian Mangmang, Zheng Supei, Feng Jianhu, Zhai Mengqing. Well-Balanced Preserving of Entropy Stable Schemes for Shallow Water Equations [J]. Acta mathematica scientia,Series A, 2023, 43(2): 491-504. |
[9] | Hao Zhang,Na Wang. A Class of Weakly Nonlinear Critical Singularly Perturbed Integral Boundary Problems [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1060-1073. |
[10] | Nan Fan,Caishi Wang,Hong Ji. Perturbations of Canonical Unitary Involutions Associated with Quantum Bernoulli Noises [J]. Acta mathematica scientia,Series A, 2022, 42(4): 969-977. |
[11] | Zhonghua Zhang,Qian Zhang. Qualitative Analysis of a Stochastic SIVS Epidemic Model with Nonlinear Perturbations Under Regime Switching [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1218-1234. |
[12] | Limeng Wu,Mingkang Ni,Suhong Li,Haibo Lu. Asymptotic Solution of Singularly Perturbed Boundary Value Problem with Integral Boundary Condition [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1192-1203. |
[13] | Haixia Li. Existence and Uniqueness of Positive Solutions to an Unstirred Chemostat with Toxins [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1175-1185. |
[14] | Wencui Liang,Zhengjie Zhang. Multiple Solutions for Nonlinear Equations Related to Kirchhoff Type Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 842-849. |
[15] | Cheng Ouyang,Weigang Wang,Jiaqi Mo. The Fractional Generalized Disturbed Thermal Wave Equation [J]. Acta mathematica scientia,Series A, 2020, 40(2): 452-459. |
|