Supported by the NSFC (11171082), the Natural Science Foundation of Fujian Province (2015J01004) and the New Century Excellent Talents in Fujan Province
Liao Shupeng, Shen Jianhe. One-Pulse Travelling Front Solutions of a sine-Gordon Equation with Slowly Varying Parameters[J].Acta mathematica scientia,Series A, 2018, 38(4): 810-822.
[1] Derks G, Doelman A, Van Gils S, Visser T. Travelling waves in a singularly perturbed sine-Gordon equation. Physica D, 2003, 180:40-70 [2] Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J Differential Equations, 1979, 31(1):53-98 [3] Jones C. Geometric Singular Perturbation Theory//Johnson R. Dynamical Systems. Berlin:SpringerVerlag, 1995:44-118 [4] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York:Springer-Verlag, 1994 [5] Derks G, Doelman A, Knight C, Susanto H. Pinned fluxons in a Josephson junction with a finite-length inhomogeneity. Euro J Appl Math, 2012, 23:201-244 [6] Jones C, Kaper T J, Kopell N. Tracking invariant manifolds up to exponentially small errors. SIAM, J Math Anal, 1996, 27(2):558-577 [7] Doelman A, Gardner R A, Kaper T J. Large stable pulse solutions in reaction-diffusion equations. Indiana Univ Math J, 2001, 50:443-507 [8] Doelman A, Hek G, Valkhoff N. Stabilization by slow diffusion in a real Ginzburg-Landau system. J Nonlinear Sci, 2004, 14:237-278