Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (5): 954-962.
Previous Articles Next Articles
Xiangli Li1,*(),Juanjuan Shi2,Xiaoliang Dong3
Received:
2016-10-24
Online:
2018-10-26
Published:
2018-11-09
Contact:
Xiangli Li
E-mail:lixiangli@guet.edu.cn
Supported by:
CLC Number:
Xiangli Li,Juanjuan Shi,Xiaoliang Dong. A Class of Modified Non-Monotonic Spectral Conjugate Gradient Method and Applications to Non-Negative Matrix Factorization[J].Acta mathematica scientia,Series A, 2018, 38(5): 954-962.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
算法 | fun | opt | time | |
(50, 50, 2) | ncg | 6.660e-003 | 6.756e-001 | 6.578 |
算法1 | 8.426e-001 | 8.636e-001 | 1.594 | |
算法2 | 3.741e+000 | 6.857e-001 | 1.297 | |
(50, 50, 4) | ncg | 6.883e-002 | 2.564e+000 | 108.016 |
算法1 | 1.954e+000 | 1.015e+001 | 37.969 | |
算法2 | 5.520e-002 | 2.840e+000 | 38.969 | |
(100, 50, 4) | ncg | 5.817e-002 | 2.260e+000 | 57.031 |
算法1 | 1.708e+000 | 1.587e+001 | 48.141 | |
算法2 | 9.582e-006 | 2.010e-002 | 20.609 | |
(100, 50, 5) | ncg | 8.217e-004 | 3.638e-001 | 190.438 |
算法1 | 7.022e-001 | 7.183e+000 | 30.547 | |
算法2 | 3.400e-002 | 3.823e+000 | 31.906 | |
(100, 100, 4) | ncg | 1.463e-003 | 6.988e-001 | 35.922 |
算法1 | 2.605e+000 | 2.415e+001 | 32.750 | |
算法2 | 2.297e-007 | 8.993e-003 | 3.781 | |
(100, 100, 5) | ncg | 2.323e-002 | 1.247e+001 | 300.094 |
算法1 | 2.484e+000 | 2.508e+001 | 54.281 | |
算法2 | 3.359e-002 | 5.040e+000 | 76.109 |
1 | Sun W , Yuan Y X . Optimization Theory and Methods. New York: Springer, 2006: 175- 200 |
2 | Vrahatis M N , Androulakis G S , Lambrinos J N , et al. A class of gradient unconstrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics, 2000, 114 (2): 367- 386 |
3 | Shi Z J , Guo J . A new family of conjugate gradient methods. Journal of Computational & Applied Mathematics, 2009, 224 (1): 444- 457 |
4 |
Yuan G , Wei Z , Li G . A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs. Journal of Computational and Applied Mathematics, 2014, 255: 86- 96
doi: 10.1016/j.cam.2013.04.032 |
5 | Jiang X Z , Jian J B . Two modified nonlinear conjugate gradient methods with disturbance factors for unconstrained optimization. Nonlinear Dynamics, 2014, 77 (1/2): 387- 397 |
6 | Yuan G , Wei Z , Zhao Q . A modified Polak-Ribière-Polyak conjugate gradient algorithm for large-scale optimization problems. ⅡE Transactions, 2014, 46 (4): 397- 413 |
7 |
Itoh S , Sugihara M . Formulation of a preconditioned algorithm for the conjugate gradient squared method in accordance with its logical structure. Applied Mathematics, 2015, 06 (8): 1389- 1406
doi: 10.4236/am.2015.68131 |
8 | Yuan G , Zhang M . A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations. Journal of Computational and Applied Mathematics, 2015, 286 (3): 186- 195 |
9 |
Yuan G , Meng Z , Li Y . A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. Journal of Optimization Theory and Applications, 2016, 168 (1): 129- 152
doi: 10.1007/s10957-015-0781-1 |
10 |
胡朝明, 万中, 王旭. 一种新的非单调谱共轭梯度算法. 数学物理学报, 2013, 33A (1): 78- 88
doi: 10.3969/j.issn.1003-3998.2013.01.010 |
Hu C M , Wan Z , Wang X . A new nonmonotone spectral conjugate gradient algorithm. Acta Math Sci, 2013, 33A (1): 78- 88
doi: 10.3969/j.issn.1003-3998.2013.01.010 |
|
11 |
Chen Q , Jiang X Z . A spectral conjugate gradient method for unconstrained optimization. Applied Mathematics and Optimization, 2001, 43 (2): 117- 128
doi: 10.1007/s00245-001-0003-0 |
12 | Zhang B , Zhu Z , Li S . A modified spectral conjugate gradient projection algorithm for total variation image restoration. Applied Mathematics Letters, 2014, 27 (1): 26- 35 |
13 | 李董辉, 童小娇, 万中. 数值最优化算法与理论. 北京: 科学出版社, 2011: 71- 87 |
Li D H , Tong X J , Wan Z . Numerical Optimization Algorithms and Theory. Beijing: Science Press, 2011: 71- 87 | |
14 |
Gao H , Zhang H B , Li Z B , et al. A nonmonotone inexact Newton method for unconstrained optimization. Optimization Letters, 2017, 11 (5): 947- 965
doi: 10.1007/s11590-015-0976-2 |
15 |
Dai Y H . Convergence properties of the BFGS algoritm. Siam Journal on Optimization, 2002, 13 (3): 693- 701
doi: 10.1137/S1052623401383455 |
16 |
Zhang H , Ni Q . A new regularized quasi-Newton algorithm for unconstrained optimization. Applied Mathematics and Computation, 2015, 259: 460- 469
doi: 10.1016/j.amc.2015.02.032 |
17 | 沈洁, 郭方芳, 庞丽萍. 非光滑凸规划不可行拟牛顿束方法的收敛性分析. 数学进展, 2016, 46 (2): 299- 308 |
Shen J , Guo F F , Pang L P . Convergence analysis of an infeasible quasi-Newton bundle method for nonsmooth convex programming. Advances in Mathematics, 2016, 46 (2): 299- 308 | |
18 |
Polyak B T . The conjugate gradient method in extremal problems. Ussr Computational Mathematics and Mathematical Physics, 1969, 9 (4): 94- 112
doi: 10.1016/0041-5553(69)90035-4 |
19 |
Cardenas S . Efficient generalized conjugate gradient algorithms. Ⅰ. Theory Journal of Optimization Theory and Applications, 1991, 69 (1): 129- 137
doi: 10.1007/BF00940464 |
20 |
Hestenes M R , Stiefel E . Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 1952, 49 (6): 409- 436
doi: 10.6028/jres.049.044 |
21 | 万中, 冯冬冬. 一类非单调保守BFGS算法研究. 计算数学, 2011, 33 (4): 387- 396 |
Wan Z , Fen D D . Investigation on a class of nonmonotone cautious BFGS algorithms. Mathematica Numerica Sinica, 2011, 33 (4): 387- 396 | |
22 | Ahookhosh M , Amini K , Bahrami S . A class of nonmonotone Armijo-type line search method for unconstrained optimization. Optimization, 2012, 61 (4): 387- 404 |
23 |
Lee D D , Seung H S . Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401: 788- 791
doi: 10.1038/44565 |
24 |
Liu H , Li X . Modified subspace Barzilai-Borwein gradient method for non-negative matrix factorization. Computational Optimization and Applications, 2013, 55 (1): 173- 196
doi: 10.1007/s10589-012-9507-6 |
25 | Paatero P , Tapper U . Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994, 5 (5): 111- 126 |
26 | Cichocki A , Zdunek R , Phan A H , et al. Nonnegative matrix and tensor factorizations:applications to exploratory multi-way data analysis and Blind Source separation. Wiley Publishing, 2009, 25 (2): 1- 3 |
[1] | Cai Yu, Zhou Guanghui. Global Convergence of a WYL Type Spectral Conjugate Gradient Method [J]. Acta mathematica scientia,Series A, 2024, 44(1): 173-184. |
[2] | Liu Pengjie, Wu Yanqiang, Shao Feng, Zhang Yan, Shao Hu. Two Extended HS-type Conjugate Gradient Methods with Restart Directions [J]. Acta mathematica scientia,Series A, 2023, 43(2): 570-580. |
[3] | Gonglin Yuan,Yulun Wu,Hongtruong Pham. A Modified HS-DY-Type Method with Nonmonotone Line Search for Image Restoration and Unconstrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(2): 605-620. |
[4] | Xianzhen Jiang,Wei Liao,Jinbao Jian,Xiaodi Wu. An Improved PRP Type Spectral Conjugate Gradient Method with Restart Steps [J]. Acta mathematica scientia,Series A, 2022, 42(1): 216-227. |
[5] | Zhibin Zhu,Yuanhang Geng. A Modified Three-Term WYL Conjugate Gradient Method [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1871-1879. |
[6] | Guodong Ma. Improved PRP and HS Conjugate Gradient Methods with the Strong Wolfe Line Search [J]. Acta mathematica scientia,Series A, 2021, 41(3): 837-847. |
[7] | HU Chao-Ming, WAN Zhong, WANG Xu. A New Nonmonotone Spectral Conjugate Gradient Algorithm [J]. Acta mathematica scientia,Series A, 2013, 33(1): 78-88. |
[8] | SUN Qing-Ying, DONG Jie-Hong, SANG Zhao-Yang. A New Trust Region Algorithm with Simple Quadratic Models and Line Search [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1562-1574. |
[9] | SHI Zhen-Jun. A Nonlinear Conjugate Gradient Method under Exact Line Search [J]. Acta mathematica scientia,Series A, 2004, 4(6): 675-682. |
|