Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (5): 984-1000.
Previous Articles Next Articles
Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang*()
Received:
2017-07-25
Online:
2018-10-26
Published:
2018-11-09
Contact:
Shuwen Zhang
E-mail:zhangsw_123@126.com
Supported by:
CLC Number:
Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response[J].Acta mathematica scientia,Series A, 2018, 38(5): 984-1000.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Cai Y L , Kang Y , Wang W M . A stochastic SIRS epidemic model with nonlinear incidence rate. Appl Math Comput, 2017, 305: 221- 240 |
2 | Liu Q , Jiang D Q , Shi N Z , et al. Dynamical behavior of a stochastic HBV infection model with logistic hepatocyte growth. Acta Math Sci, 2017, 37B (4): 927- 940 |
3 | 魏凤英, 林青腾. 一类具有校正隔离率随机SIQS模型的绝灭性与分布. 数学物理学报, 2017, 37A (6): 1148- 1161 |
Wei F Y , Lin Q T . Extinction and distribution for an SIQS epidemi model with quarantined-adjusted incidence. Acta Math Sci, 2017, 37A (6): 1148- 1161 | |
4 |
Wang W M , Cai Y L , Li J L , Gui Z J . Periodic behavior in a FIV model with seasonality as well as environment fluctuations. J Franklin I, 2017, 354: 7410- 7428
doi: 10.1016/j.jfranklin.2017.08.034 |
5 | Liu M , Mandal P S . Dynamical behavior of a one-prey two-predator model with random perturbations. Commun Nonlinear Sci, 2015, 28 (1/3): 123- 137 |
6 |
Ji C Y , Jiang D Q , Shi N Z . A note on a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation. J Math Anal Appl, 2011, 377 (1): 435- 440
doi: 10.1016/j.jmaa.2010.11.008 |
7 |
Mandal P S , Banerjee M . Stochastic persistence and stationary distribution in a Holling-Tanner type prey-predator model. Physica A, 2012, 391 (4): 1216- 1233
doi: 10.1016/j.physa.2011.10.019 |
8 |
Jiang D Q , Zuo W J , Hayat T , Alsaedi A . Stationary distribution and periodic solutions for stochastic Holling-Leslie predator-prey systems. Physica A, 2016, 460: 16- 28
doi: 10.1016/j.physa.2016.04.037 |
9 |
Ji C Y , Jiang D Q , Shi N Z . Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation. J Math Anal Appl, 2009, 359 (2): 482- 498
doi: 10.1016/j.jmaa.2009.05.039 |
10 |
Zhao D L , Yuan S L . Dynamics of the stochastic Leslie-Gower predator-prey system with randomized intrinsic growth rate. Physica A, 2016, 461: 419- 428
doi: 10.1016/j.physa.2016.06.010 |
11 | Xu Y , Liu M , Yang Y . Analysis of a stochastic two-predators one-prey system with modified Leslie-Gower and Holling-type Ⅱ schemes. J Appl Anal Comput, 2017, 7 (2): 713- 727 |
12 |
Liu M , Wang K . Dynamics of a two-prey one-predator system in random environments. J Nonlinear Sci, 2013, 23 (5): 751- 775
doi: 10.1007/s00332-013-9167-4 |
13 | Qiu H , Liu M , Wang K , Wang Y . Dynamics of a stochastic predator-prey system with BeddingtonDeAngelis functional response. Appl Math Comput, 2012, 219 (4): 2303- 2312 |
14 |
Liu M , Wang K . Persistence, extinction and global asymptotical stability of a non-autonomous predatorprey model with random perturbation. Appl Math Model, 2012, 36 (11): 5344- 5353
doi: 10.1016/j.apm.2011.12.057 |
15 | 王克. 随机生物数学模型. 北京: 科学出版社, 2010 |
Wang K . Random Biological Mathematical Model. Beijing: Science Press, 2010 | |
16 | Khasminskii R . Stochastic Stability of Differential Equations. Alphen aan den Rijn: Sijthoff & Noordhoff, 1980 |
17 |
Mao X R , Marion G , Renshaw E . Environmental Brownian noise suppresses explosions in population dynamics. Stoch Proc Appl, 2002, 97 (1): 95- 110
doi: 10.1016/S0304-4149(01)00126-0 |
18 | Kloeden P , Platen E . Numerical Solution of Stochastic Differential Equations. Berlin: Springer, 1999 |
[1] | Zeng Xiaping, Lu Wenwen, Pang Guoping, Liang Zhiqing. Single Population Dynamics Model of Fish with Seasonal Switching and Impulsive Perturbations [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1206-1216. |
[2] | Zhang Shengliang, Qian Yanyan. Application of Cubic MQ Quasi-Interpolation in Derivative Approximations Under Random Perturbation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 180-188. |
[3] | Ren Chenchen, Yang Sudan. Existence and Uniqueness of Solutions for Sub-Linear Heat Equations with Almost Periodic Coefficients [J]. Acta mathematica scientia,Series A, 2025, 45(1): 31-43. |
[4] |
Lou Yu, Zhang Yi.
Breather and Rogue Wave on the Periodic/Double Periodic Background and Interaction Solutions of the Generalized Derivative Nonlinear Schr |
[5] |
Qian Yuting, Zhou Xueliang, Cheng Zhibo.
Existence of Periodic Solutions for |
[6] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[7] |
Qian Yuting, Zhou Xueliang, Cheng Zhibo.
Existence of Periodic Solutions for |
[8] | Yin Ruixia, Wang Zedong, Zhang Long. A Periodic Stage Structure Single-Population Model with Infinite Delay and Feedback Control [J]. Acta mathematica scientia,Series A, 2024, 44(4): 994-1011. |
[9] | Yang Jiaopeng, Liang Yong. Solitary and Periodic Solutions of the Generalized b-equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 670-686. |
[10] | Wang Zihuan,Wang Chao. Symmetric and Periodic Solutions for a Class of Weakly Coupled Systems Composed of Two Particles with Obstacles [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1427-1439. |
[11] | Shan Yuan. Relative Morse Index and Multiple Solutions for Asymptotically Linear Dirac Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 69-81. |
[12] | Tang Yuxuan, Zhou Guoquan. The Rogue Wave Solution of MNLS Equation Based on Hirota's Bi-linear Derivative Transformation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 132-142. |
[13] | Song Huijuan, Huang Qian, Wang Zejia. Asymptotic Analysis of a Tumor Model with Angiogenesis and a Periodic Supply of External Nutrients [J]. Acta mathematica scientia,Series A, 2023, 43(1): 261-273. |
[14] | Xuelei Wang. Large Multiple Periodic Solutions for the 1-Dimensional Sub-Linear p-Laplacian Equation [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1462-1472. |
[15] | Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380. |
|