Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (6): 1239-1244.
Yanbing Yang1,2,Wei Lian3,Shaobin Huang2,Runzhang Xu1,*()
Received:
2017-08-29
Online:
2018-12-26
Published:
2018-12-27
Contact:
Runzhang Xu
E-mail:xurunzh@163.com
Supported by:
CLC Number:
Yanbing Yang,Wei Lian,Shaobin Huang,Runzhang Xu. Finite Time Blow up of Solutions for Nonlinear Wave Equation with General Nonlinearity for Arbitrarily Positive Initial Energy[J].Acta mathematica scientia,Series A, 2018, 38(6): 1239-1244.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Sattinger D H . On global solution of nonlinear hyperbolic equations. Arch Ration Mech Anal, 1968, 30: 148- 172
doi: 10.1007/BF00250942 |
2 |
Levine H A . Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J Math Anal, 1974, 5: 138- 146
doi: 10.1137/0505015 |
3 | Levine H A . Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt=Au + F(u). Trans Amer Math Soc, 1974, 192: 1- 21 |
4 |
Ball J M . Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart J Math, 1977, 28: 473- 486
doi: 10.1093/qmath/28.4.473 |
5 |
Payne L E , Sattinger D H . Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22: 273- 303
doi: 10.1007/BF02761595 |
6 |
Liu Y C , Zhao J S . On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal, 2006, 64: 2665- 2687
doi: 10.1016/j.na.2005.09.011 |
7 |
Xu R Z . Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data. Quart Appl Math, 2010, 68: 459- 468
doi: 10.1090/qam/2010-68-03 |
8 |
Esquivel-Avila J A . Blow up and asymptotic behavior in a nondissipative nonlinear wave equation. Appl Anal, 2014, 93: 1963- 1978
doi: 10.1080/00036811.2013.859250 |
9 | Gazzola F , Squassina M . Global solutions and finite time blow up for damped semilinear wave equations. Ann Inst H Poincaré Anal Non Linéaire, 2006, 93: 185- 207 |
10 | Chen H , Liu G W . Global existence, uniform decay and exponential growth for a class of semi-linear wave eqution with strong damping. Acta Math Sci, 2013, 33B (1): 41- 58 |
11 |
狄华斐, 尚亚东. 一类带有非线性阻尼项和源项的四阶波动方程整体解的存在性与不存在性. 数学物理学报, 2015, 35A (3): 618- 633
doi: 10.3969/j.issn.1003-3998.2015.03.016 |
Di H F , Shang Y D . Global existence and nonexistence of solutions for a class of fourth order wave equation with nonlinear damping and source terms. Acta Math Sci, 2015, 35A (3): 618- 633
doi: 10.3969/j.issn.1003-3998.2015.03.016 |
|
12 |
苏晓, 王书彬. 任意正初始能量状态下半线性波动方程解的有限时间爆破. 数学物理学报, 2017, 37A (6): 1085- 1093
doi: 10.3969/j.issn.1003-3998.2017.06.008 |
Su X , Wang S B . Finite time blow-up for the damped semilinear wave equations with arbitrary positive initial energy. Acta Math Sci, 2017, 37A (6): 1085- 1093
doi: 10.3969/j.issn.1003-3998.2017.06.008 |
|
13 | 沈继红, 张明有, 杨延冰, 等. 具阻尼的高维广义Boussinesq方程的Cauchy问题的整体适定性. 数学物理学报, 2014, 34A (5): 1173- 1187 |
Shen J H , Zhang M Y , Yang Y B , et al. Global well-posedness of Cauchy problem for damped multidimensional generalized Baussinesq equations. Acta Math Sci, 2014, 34A (5): 1173- 1187 |
[1] | Zhu Peng, Chen Yanping, Xu Xianyu. BDF2-Type Finite Element Method for Time-Fractional Diffusion-Wave Equations on Nonuniform Grids [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1268-1290. |
[2] | Li Qian, Xing Yanyuan. Finite Time Blow up of Solutions for Nonlinear Wave Equation with the Damping Term at Arbitrarily Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2025, 45(3): 748-755. |
[3] | Feng Zhendong, Guo Fei, Li Yuequn. Breakdown of Solutions to a Weakly Coupled System of Semilinear Wave Equations [J]. Acta mathematica scientia,Series A, 2025, 45(3): 726-747. |
[4] | Bai Jinyan, Chai Shugen. Stabilization of Degenerate Wave Equations with Delayed Boundary Feedback [J]. Acta mathematica scientia,Series A, 2024, 44(1): 133-139. |
[5] | Xinhai He,Mei Liu,Han Yang. Existence and Uniqueness of Global Solutions for a Class of Semilinear Time Fractional Diffusion-Wave Equations [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1705-1718. |
[6] | Kaixuan Zhu,Yongqin Xie,Xinyu Mei,Xijun Deng. Uniform Attractors for the Sup-Cubic Weakly Damped Wave Equations with Delays [J]. Acta mathematica scientia,Series A, 2022, 42(1): 86-102. |
[7] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
[8] | Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381. |
[9] | Dongxia Fan,Dongxia Zhao,Na Shi,Tingting Wang. The PDP Feedback Control and Stability Analysis of a Diffusive Wave Equation [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1088-1096. |
[10] | Jinglei Zhao,Jiacheng Lan,Shanshan Yang. Lifespan Estimate of Damped Semilinear Wave Equation in Exterior Domain with Neumann Boundary Condition [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1033-1041. |
[11] | Xingqian Ling,Weiguo Zhang. Periodic Wave Solutions, Solitary Wave Solutions and Their Relationship for Generalized Symmetric Regularized Long Wave Equation with Two Nonlinear Terms [J]. Acta mathematica scientia,Series A, 2021, 41(3): 603-628. |
[12] | Changwang Xiao,Fei Guo. Global Existence and Blowup Phenomena for a Semilinear Wave Equation with Time-Dependent Damping and Mass in Exponentially Weighted Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1568-1589. |
[13] | Shoujun Huang,Xiwang Meng. Improved Ordinary Differential Inequality and Its Application to Semilinear Wave Equations [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1319-1332. |
[14] | Shoujun Huang,Juan Wang. Blow up of Solutions to Semilinear Wave Equations with Variable Coefficient for Nonlinearity in an N-Dimensional Exterior Domain [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1259-1268. |
[15] | Zhigang Wu,Xiaofang Miao. Pointwise Estimates for Systems of Wave Equations with Viscosity [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1421-1442. |
|