Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (1): 125-132.
Previous Articles Next Articles
Yijun He1,*(),Huaihong Gao1,Hua Wang2,Shunyong Li1
Received:
2017-06-27
Online:
2019-02-26
Published:
2019-03-12
Contact:
Yijun He
E-mail:heyijun@sxu.edu.cn
Supported by:
CLC Number:
Yijun He,Huaihong Gao,Hua Wang,Shunyong Li. A Note on Global Solution and Blow-Up for a Class of Pseudo p-Laplacian Evolution Equations with Logarithmic Nonlinearity[J].Acta mathematica scientia,Series A, 2019, 39(1): 125-132.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Al'shin A B , Korpusov M O , Sveshnikov A G . Blow-up in Nonlinear Sobolev Type Equations. Berlin: Walter de Gruyter & Co, 2011 |
2 | Ball J M . Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart J Math Oxford, 1977, 28 (112): 473- 486 |
3 |
Cao Y , Yin J , Wang C . Cauchy problems of semilinear pseudo-parabolic equations. J Differential Equations, 2009, 246 (12): 4568- 4590
doi: 10.1016/j.jde.2009.03.021 |
4 |
Chen H , Luo P , Liu G . Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. J Math Anal Appl, 2015, 422 (1): 84- 98
doi: 10.1016/j.jmaa.2014.08.030 |
5 |
Chen H , Tian S . Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. J Differential Equations, 2015, 258 (12): 4424- 4442
doi: 10.1016/j.jde.2015.01.038 |
6 |
Del Pino M , Dolbeault J . The optimal Euclidean Lp-Sobolev logarithmic inequality. J Funct Anal, 2003, 197 (1): 151- 161
doi: 10.1016/S0022-1236(02)00070-8 |
7 | DiBenedetto E . Degenerate Parabolic Equations. New York: Springer-Verlag, 1993 |
8 |
Drábek P , Pohozaev S I . Positive solutions for the p-Laplacian:Application of the fibrering method. Proceedings of the Royal Society of Edinburgh:Section A Mathematics, 1997, 127 (4): 703- 726
doi: 10.1017/S0308210500023787 |
9 | Gopala Rao V R, Ting T W. Solutions of pseudo-heat equations in the whole space. Arch Rational Mech Anal, 1972/73, 49: 57-78 |
10 | Ladyženskaja O A, Solonnikov V A, Ural'ceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence, RI: American Mathematical Society, 1968 |
11 |
Martinez P . A new method to obtain decay rate estimates for dissipative systems. ESAIM Control Optim Calc Var, 1999, 4: 419- 444
doi: 10.1051/cocv:1999116 |
12 |
Nhan L C , Truong L X . Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity. Comput Math Appl, 2017, 73 (9): 2076- 2091
doi: 10.1016/j.camwa.2017.02.030 |
13 |
Payne L E , Sattinger D H . Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22 (3-4): 273- 303
doi: 10.1007/BF02761595 |
14 |
Pino M D , Dolbeault J . Nonlinear diffusions and optimal constants in sobolev type inequalities:asymptotic behaviour of equations involving the p-Laplacian. Comptes Rendus Mathematique, 2002, 334 (5): 365- 370
doi: 10.1016/S1631-073X(02)02225-2 |
15 | Showalter R E , Ting T W . Pseudoparabolic partial differential equations. SIAM Journal on Mathematical Analysis, 1970, 1 (1): 1- 26 |
16 |
Xu R , Su J . Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J Funct Anal, 2013, 264 (12): 2732- 2763
doi: 10.1016/j.jfa.2013.03.010 |
[1] | Li Jianjun,Li Yangchen. The Existence and Blow-Up of Solutions for a Class of Fractional $ p$-Laplace Diffusion Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2025, 45(2): 465-478. |
[2] | Shi Jincheng, Liu Yan. Global Existence and Blow-Up for Semilinear Third Order Evolution Equation with Different Power Nonlinearities [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1550-1562. |
[3] | Gao Xiaoru, Li Jianjun, Tu Jun. Blow-Up of Solutions for a Class of Fractional Diffusion Equations with Time Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1230-1241. |
[4] | Wang Weimin, Yan Wei. Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 595-608. |
[5] | Li Fengjie, Li Ping. Blow-up Solutions in a p-Kirchhoff Equation of Pseudo-Parabolic Type [J]. Acta mathematica scientia,Series A, 2024, 44(3): 717-736. |
[6] | Jian Hui, Gong Min, Wang Li. On the Blow-Up Solutions of Inhomogeneous Nonlinear Schrödinger Equation with a Partial Confinement [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1350-1372. |
[7] | Shen Xuhui,Ding Juntang. Blow-Up Conditions of Porous Medium Systems with Gradient Source Terms and Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1417-1426. |
[8] | Ouyang Baiping. Blow-up of Solutions to the Euler-Poisson-Darboux-Tricomi Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2023, 43(1): 169-180. |
[9] | Feng Meiqiang, Zhang Xuemei. On the Optimal Global Estimates of Boundary Blow-up Solutions to the Monge-Ampère Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 181-202. |
[10] | Zhen Qiu,Guangwu Wang. Blow-Up of the Smooth Solutions to the Quantum Navier-Stokes-Landau-Lifshitz Equations [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1074-1088. |
[11] | Lianfeng Yang,Xiaoyu Zeng. Existence and Blow-Up Behavior of Ground State Solutions for Pseudo-Relativistic Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 165-175. |
[12] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[13] | Jingran He,Helin Guo,Wenqing Wang. A p-Laplace Eigenvalue Problem with Coercive Potentials [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1323-1332. |
[14] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
[15] | Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381. |
|