Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (2): 358-371.
Previous Articles Next Articles
Received:
2017-08-09
Online:
2019-04-26
Published:
2019-05-05
Supported by:
CLC Number:
Haiyin Li. Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model[J].Acta mathematica scientia,Series A, 2019, 39(2): 358-371.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Aiello W G , Freedman H I . A time-delay model of single-species growth with stage structure. Math Biosci, 1990, 101: 139- 153
doi: 10.1016/0025-5564(90)90019-U |
2 |
Arditi R , Ginzburg L R . Coupling in predator-prey dynamics:ratio-dependence. J Theoret Biol, 1989, 139: 311- 326
doi: 10.1016/S0022-5193(89)80211-5 |
3 | Kuang Y . Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993 |
4 |
Li H , Takeuchi Y . Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete Cont Dyn B, 2015, 20 (4): 1117- 1134
doi: 10.3934/dcdsb |
5 |
Li H , She Z . Uniqueness of periodic solutions of a nonautonomous density-dependent predator-prey system. J Math Anal Appl, 2015, 422 (2): 886- 905
doi: 10.1016/j.jmaa.2014.09.008 |
6 |
Qu Y , Wei J . Bifurcation analysis in a predator-prey system with stage-structure and harvesting. J Franklin Inst, 2010, 347: 1097- 1113
doi: 10.1016/j.jfranklin.2010.03.017 |
7 |
Song Y , Wei J . Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system. J Math Anal Appl, 2005, 301: 1- 21
doi: 10.1016/j.jmaa.2004.06.056 |
8 |
Beddington J R . Mutual interference between parasites or predators and its effect on searching efficiency. J Animal Ecol, 1975, 44: 331- 340
doi: 10.2307/3866 |
9 |
DeAngelis D L , Goldstein R A , O'Neil R V . A model of trophic interaction. Ecology, 1975, 56: 881- 892
doi: 10.2307/1936298 |
10 | Bainov D D , Simeonov P S . Systems with Impulse Effect:Stability Theory and Applications. Chichester: Ellis Horwood Limited, 1989 |
11 | Bainov D D , Simeonov P S . Impulsive Differential Equations:Periodic Solutions and Applications. New York: Longman Scientific and Technical, 1993 |
12 |
Kratina P , Vos M , Bateman A , Anholt B R . Functional response modified by predator density. Oecologia, 2009, 159: 425- 433
doi: 10.1007/s00442-008-1225-5 |
13 |
Anderson F S . Competition in populations of one age group. Biometrica, 1960, 16: 19- 27
doi: 10.2307/2527952 |
14 |
Barclay H J , Van den Driessche P . A model for a species with two life history stages and added mortality. Ecol Model, 1980, 11: 157- 166
doi: 10.1016/0304-3800(80)90081-2 |
15 |
Li H , Takeuchi Y . Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response. J Math Anal Appl, 2011, 374: 644- 654
doi: 10.1016/j.jmaa.2010.08.029 |
16 | Hassard B , Kazarinoff N , Wan Y . Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981 |
[1] | Xiao Jianglong, Song Yongli, Xia Yonghui. Spatiotemporal Dynamics Induced by the Interaction Between Fear and Schooling Behavior in a Diffusive Model [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1577-1594. |
[2] | Bai Jinyan, Chai Shugen. Stabilization of Degenerate Wave Equations with Delayed Boundary Feedback [J]. Acta mathematica scientia,Series A, 2024, 44(1): 133-139. |
[3] | Ma Yani, Yuan Hailong. Bifurcation Analysis of a Class of Gierer-Meinhardt Activation Inhibition Model with Time Delay [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1774-1788. |
[4] | Kang Xiaodong, Fan Hongxia. Approximate Controllability for a Class of Second-Order Evolution Equations with Instantaneous Impulse [J]. Acta mathematica scientia,Series A, 2023, 43(2): 421-432. |
[5] | Rui Xu,Yan Yang. Dynamics of an HTLV-I Infection Model with Delayed and Saturated CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1836-1848. |
[6] | Yage Tong,Kaisu Wu. Spectral Analysis of the Main Operator of Rotenberg Equation with Time Delay Under Nonsmooth Boundary Conditions [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1320-1331. |
[7] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[8] | Daoxiang Zhang,Ben Li,Dandan Chen,Yating Lin,Xinmei Wang. Hopf Bifurcation for a Fractional Differential-Algebraic Predator-Prey System with Time Delay and Economic Profit [J]. Acta mathematica scientia,Series A, 2022, 42(2): 570-582. |
[9] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[10] | Jingnan Wang,Dezhong Yang. Stability and Bifurcation of a Pathogen-Immune Model with Delay and Diffusion Effects [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1204-1217. |
[11] | Xiling Li,Fei Gao,Wenqin Li. Stability Analysis of Fractional-Order Hepatitis B Virus Infection Model With Immune Delay [J]. Acta mathematica scientia,Series A, 2021, 41(2): 562-576. |
[12] | Gaihui Guo,Xiaohui Liu. Hopf Bifurcation and Stability for an Autocatalytic Reversible Biochemical Reaction Model [J]. Acta mathematica scientia,Series A, 2021, 41(1): 166-177. |
[13] | Jian Liu,Zhixin Zhang,Wei Jiang. Global Mittag-Leffler Stability of Fractional Order Nonlinear Impulsive Differential Systems with Time Delay [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1053-1060. |
[14] | Lifei Zheng,Jie Guo,Meihua Wu,Xiaorui Wang,Aying Wan. The Research on a Class of the Predator-Prey-Mutualist System with Delays [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1001-1013. |
[15] | Yang Jihua, Zhang Erli, Liu Mei. Dynamic Analysis and Chaos Control of a Finance System with Delayed Feedbacks [J]. Acta mathematica scientia,Series A, 2017, 37(4): 767-782. |
|