Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 738-760.
Previous Articles Next Articles
Received:
2018-04-04
Online:
2019-08-26
Published:
2019-09-11
Contact:
Na Wang
E-mail:wangna1989@hebtu.edu.cn
Supported by:
CLC Number:
Na Wang,Shu Wang. The Boundary Layer for MHD Equations in a Plane-Parallel Channel[J].Acta mathematica scientia,Series A, 2019, 39(4): 738-760.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Mazzucato A L, Niu D J, Wang X M. Boundary layer associated with a class of 3D nonlinear plane parallel channel flows. Indiana Univ Math J, 2011, 60:1113-1136<br /> |
[2] | Biskamp D. Nonlinear Magnetohydrodynamics. Cambridge:Cambridge University Press, 1993<br /> |
[3] | E W N. Boundary layer theory and the zero viscosity limit of the Navier-Stokes equations. Acta Math Sin (English Series), 2000, 16:207-218<br /> |
[4] | Han D Z, Mazzucato A L, Niu D J, Wang X M. Boundary layer for a class of nonlinear pipe flow. J Differential Equations, 2012, 252:6387-6413<br /> |
[5] | Duvaut G, Lions J L. Inéquation en themoélasticite et magnétohydrodynamique. Arch Ration Mech Anal, 1972, 46:241-279<br /> |
[6] | Gie G M, Kelliher J P, Lopes Filho M C, et al. The vanishing viscosity limit for some symmetric flows. 2017, arXiv:1706.06039<br /> |
[7] | He C, Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213:235-254<br /> |
[8] | He C, Xin Z P. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J Funct Anal, 2005, 227:113-152<br /> |
[9] | Masmoudi N. The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary. Arch Ration Mech Anal, 1998, 142:375-394<br /> |
[10] | Liu C J, Xie F, Yang T. MHD boundary layers in Sobolev spaces without monotonicity Ⅱ:convergence theory. 2017, arXiv:1704.00523[math.AP]<br /> |
[11] | Masmoudi N. Remarks about the inviscid limit of the Navier-Stokes system. Comm Math Phys, 2007, 270(3):777-788<br /> |
[12] | Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half space I:Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192:433-461<br /> |
[13] | Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half space Ⅱ:Construction of Navier-Stokes solution. Comm Math Phys, 1998, 192:463-491<br /> |
[14] | Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36:635-664<br /> |
[15] | Temam R, Wang X M. Asymptotic analysis of Oseen type equations in a channel at small viscosity. Indiana Univ Math J, 1996, 45:863-916<br /> |
[16] | Temam R, Wang X M. Remarks on the Prandtl equation for a permeable wall. Z Angew Math Mech, 2000, 80:835-843<br /> |
[17] | Temam R, Wang X M. Boundary layer associated with incompressible Navier-Stokes equations:The noncharacteristic boundary case. J Differential Equations, 2002, 179:647-686<br /> |
[18] | Wu J H. Regularity criteria for the generalized MHD equations. Comm Partial Differential Equations, 2008, 33:285-306<br /> |
[19] | Wang S, Wang B Y, Liu C D, Wang N. Boundary layer problem and zero viscosity-diffusion vanishing limit of the incompressible Magnetohydrodynamic system with no-slip boundary conditions. J Differential Equations, 2017, 263:4723-4749<br /> |
[20] | 王术, 王娜. 不可压缩MHD方程组的边界层问题. 北京工业大学学报, 2017, 43(10):1596-1603 Wang S, Wang N. The boundary layer problem for the incompressible MHD equations. J Beijing Univ Technol, 2017, 43(10):1596-1603<br /> |
[21] | Wang S, Wang N. Boundary layer problem of MHD system with noncharacteristic perfect conducting wall. Applicable Analysis, 2019, 98(3):516-535<br /> |
[22] | Wang N, Wang S. Vanishing vertical limit of the incompressible combined viscosity and magnetic diffusion magnetohydrodynamic system. Math Meth Appl Sci, 2018, 41:5015-5049<br /> |
[23] | Nguyen T T, Sueur F. Boundary-layer interactions in the plane-parallel incompressible flows. Nonlinearity, 2012, 25(12):3327-3342<br /> |
[24] | Wang X M. A kato type theorem on zero viscosity limit of Navier-Stokes flows. Indiana Univ Math J, 2001, 50:223-241<br /> |
[25] | 谢晓强, 罗琳, 李常敏. 非特征边界的MHD方程的边界层, 数学年刊,2014, 35A(2):171-192 Xie X Q, Luo L, Li C M. Boundary layer for MHD equations with the noncharacteristic boundary conditions. Chin Ann Math, 2014, 35A(2):171-192 |
[1] | Fu Yuechen, Ni Mingkang. The Inner Layer of a Class of Singularly Perturbed High-Order Equations with Discontinuous Right-Hand Side [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1153-1166. |
[2] | Chen Min,Hu Biyan,Luo Hong. Boundary Layer Separation of 2-D Incompressible Navier-Stokes-Allen-Cahn System [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1123-1132. |
[3] | Hao Zhang,Na Wang. A Class of Weakly Nonlinear Critical Singularly Perturbed Integral Boundary Problems [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1060-1073. |
[4] | Qin Zhou,Lizheng Cheng. Differential Evolution Algorithms for Boundary Layer Problems on Bakhvalov-Shishkin Mesh [J]. Acta mathematica scientia,Series A, 2021, 41(1): 245-253. |
[5] | Limeng Wu,Mingkang Ni,Suhong Li,Haibo Lu. Asymptotic Solution of Singularly Perturbed Boundary Value Problem with Integral Boundary Condition [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1192-1203. |
[6] | Huaxiong Chen,Yanyan Wang,Mingkang Ni. The Contrast Structure for the Singularly Perturbed Problem with Slow-Fast Layers and Discontinuous Righthand Side [J]. Acta mathematica scientia,Series A, 2019, 39(4): 865-874. |
[7] | Zhaoyang Shang. Blow-Up Criterion for Incompressible Magnetohydrodynamics Equations in Besov Space [J]. Acta mathematica scientia,Series A, 2019, 39(1): 67-80. |
[8] | Chen Pengfei. The Inviscid and Non-Resistive Limit for 3D Nonhomogeneous Incompressible MHD Equations with a Slip Boundary Condition [J]. Acta mathematica scientia,Series A, 2018, 38(1): 83-95. |
[9] | Chen Qiong; Xiang Zhaoyin; Mu Chunlai. Blow-up Profiles to a Nonlocal Reaction-diffusion System [J]. Acta mathematica scientia,Series A, 2007, 27(3): 420-427. |
[10] | MO Jia-Qi, HAN Xiang-Lin. Asymptotic Shock Solution for a Nonlinear Equation [J]. Acta mathematica scientia,Series A, 2004, 24(2): 164-167. |
[11] | MO Jia-Qi. A Class of Shock Solution for Nonlinear Equations [J]. Acta mathematica scientia,Series A, 2003, 23(5): 530-534. |
[12] | HAN Xiang-Lin. The Shock Solution for a Class of Nonlinear Equation [J]. Acta mathematica scientia,Series A, 2003, 23(2): 253-256. |
|