Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (5): 1102-1114.
Previous Articles Next Articles
Received:
2018-11-14
Online:
2019-10-26
Published:
2019-11-08
Contact:
Jie Wu
E-mail:dxtxwj@126.com
Supported by:
CLC Number:
Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model[J].Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Barbǎlat I . Systèmes d'équations differentielles d'oscillations non linéaires. Rev Math Pures Appl, 1959, 4: 267- 270 |
2 |
Coll J C , et al. Chemical aspects of mass spawning in corals. Ⅱ. Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria:Octocorallia). Mar Biol, 1995, 123 (1): 137- 143
doi: 10.1007/BF00350332 |
3 |
Duan R , Li X , Xiang Z . Global existence and large time behavior for a two-dimensional chemotaxis-NavierStokes system. J Differential Equations, 2017, 263: 6284- 6316
doi: 10.1016/j.jde.2017.07.015 |
4 |
Espejo E , Suzuki T . Reaction enhancement by chemotaxis. Nonlinear Anal RWA, 2017, 35: 102- 131
doi: 10.1016/j.nonrwa.2016.10.010 |
5 |
Espejo E , Suzuki T . Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal RWA, 2015, 21: 110- 126
doi: 10.1016/j.nonrwa.2014.07.001 |
6 | Henry D . Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer-Verlag, 1981 |
7 |
Horstmann D , Winkler M . Boundedness vs. blow-up in a chemotaxis system. J Differential Equations, 2005, 215: 52- 107
doi: 10.1016/j.jde.2004.10.022 |
8 |
Keller E F , Segel L A . Model for chemotaxis. J Theoret Biol, 1971, 30: 225- 234
doi: 10.1016/0022-5193(71)90050-6 |
9 |
Keller E F , Segel L A . Travelling bands of chemotactic bacteria:a theoretical analysis. J Theoret Biol, 1971, 30: 235- 248
doi: 10.1016/0022-5193(71)90051-8 |
10 |
Kiselev A , Ryzhik L . Biomixing by chemotaxis and enhancement of biological reactions. Comm Partial Differential Equations, 2012, 37: 298- 312
doi: 10.1080/03605302.2011.589879 |
11 |
Li X , Wang Y , Xiang Z . Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Commun Math Sci, 2016, 14: 1889- 1910
doi: 10.4310/CMS.2016.v14.n7.a5 |
12 |
Li X , Xiao Y . Global existence and boundedness in a 2D Keller-Segel-Stokes system. Nonlinear Anal RWA, 2017, 35: 102- 131
doi: 10.1016/j.nonrwa.2016.10.010 |
13 |
Miller R L . Demonstration of sperm chemotaxis in echinodermata:asteroidea, holothuroidea, ophiuroidea. J Exp Zool, 1985, 234: 383- 414
doi: 10.1002/jez.1402340308 |
14 |
Tao Y , Winkler M . Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z Angew Math Phys, 2015, 66: 2555- 2573
doi: 10.1007/s00033-015-0541-y |
15 |
Wang Y , Winkler M , Xiang Z . The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system. Math Z, 2018, 289: 71- 108
doi: 10.1007/s00209-017-1944-6 |
16 |
Wang Y , Xiang Z . Global existence and boundedness in a Keller-Segel-Stokes system involving a tensorvalued sensitivity with satuation. J Differential Equations, 2015, 259 (12): 7578- 7609
doi: 10.1016/j.jde.2015.08.027 |
17 |
Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248 (12): 2889- 2905
doi: 10.1016/j.jde.2010.02.008 |
18 |
Winkler M . Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann Inst H Poincare (C) Non Linear Anal, 2016, 33 (5): 1329- 1352
doi: 10.1016/j.anihpc.2015.05.002 |
19 |
Wu J , Wu C . A note on the global existence of a two-dimensional chemotaxis-Navier-Stokes system. Applicable Analysis, 2019, 98: 1224- 1235
doi: 10.1080/00036811.2017.1419199 |
20 |
Wu X , Ding X , Lu T , Wang J . Topological dynamics of Zadeh's extension on upper semi-continuous fuzzy sets. Int J Bifurcation and Chaos, 2017, 27: 1750165
doi: 10.1142/S0218127417501656 |
21 |
Wu X , Ma X , Zhu Z , Lu T . Topological ergodic shadowing and chaos on uniform spaces. Int J Bifurcation and Chaos, 2018, 28: 1850043
doi: 10.1142/S0218127418500438 |
|