Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (1): 132-145.
Previous Articles Next Articles
Received:
2018-04-02
Online:
2020-02-26
Published:
2020-04-08
Supported by:
CLC Number:
Jiafa Xu. Positive Solutions for a System of Boundary Value Problems of Fractional Difference Equations Involving Semipositone Nonlinearities[J].Acta mathematica scientia,Series A, 2020, 40(1): 132-145.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 郑祖庥. 分数微分方程的发展和应用. 徐州师范大学学报, 2008, 26 (2): 1- 10 |
2 | 程金发. 分数阶差分方程理论. 厦门: 厦门大学出版社, 2011 |
3 | Goodrich C S , Peterson A C . Discrete Fractional Calculus. New York: Springer, 2015 |
4 |
Goodrich C S . On a first-order semipositone discrete fractional boundary value problem. Arch Math, 2012, 99, 509- 518
doi: 10.1007/s00013-012-0463-2 |
5 |
Xu J F , O'Regan D . Existence and uniqueness of solutions for a first-order discrete fractional boundary value problem. Rev R Acad Cienc Exactas Fís Nat Ser A Math, 2018, 112 (4): 1005- 1016
doi: 10.1007/s13398-017-0406-7 |
6 |
Dahal R , Duncan D , Goodrich C S . Systems of semipositone discrete fractional boundary value problems. J Differ Equ Appl, 2014, 20 (3): 473- 491
doi: 10.1080/10236198.2013.856073 |
7 | Goodrich C S . Existence of a positive solution to a system of discrete fractional boundary value problems. Appl Math Comput, 2011, 217 (9): 4740- 4753 |
8 |
Goodrich C S . Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions. J Differ Equ Appl, 2015, 21 (5): 437- 453
doi: 10.1080/10236198.2015.1013537 |
9 |
Goodrich C S . On discrete sequential fractional boundary value problems. J Math Anal Appl, 2012, 385 (1): 111- 124
doi: 10.1016/j.jmaa.2011.06.022 |
10 | Laoprasittichok S , Sitthiwirattham T . Existence and uniqueness results of nonlocal fractional sum-difference boundary value problems for fractional difference equations involving sequential fractional difference operators. J Comput Anal Appl, 2017, 23 (6): 1097- 1111 |
11 |
Sitthiwirattham T . Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions. Math Meth Appl Sci, 2015, 38, 2809- 2815
doi: 10.1002/mma.3263 |
12 |
Rehman M U , Iqbal F , Seemab A . On existence of positive solutions for a class of discrete fractional boundary value problems. Positivity, 2017, 21, 1173- 1187
doi: 10.1007/s11117-016-0459-4 |
13 |
Lv Z M , Cong Y P , Chen Y . Multiplicity and uniqueness for a class of discrete fractional boundary value problems. Appl Math, 2014, 59, 673- 695
doi: 10.1007/s10492-014-0079-x |
14 | Atici F M , Eloe P W . A transform method in discrete fractional calculus. Int J Differ Equ, 2007, 2 (2): 165- 176 |
15 | Wang J H , Xiang H J , Chen F L . Existence of positive solutions for a discrete fractional boundary value problem. Adv Difference Equ, 2014, 253, 1- 9 |
16 | Cuo D J , Lakshmikantham V . Nonlinear Problems in Abstract Cones. Orlando: Academic Press, 1988 |
[1] | Huo Huixia, Li Yongxiang. Existence of Positive Solutions for a Bending Elastic Beam Equation [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1476-1484. |
[2] | Guo Zhiyuan, Gao Yuan, Sun Jiacheng, Zhang Guowei. Positive Solutions of Nonlocal Beam Equations with Fully Nonlinear Terms [J]. Acta mathematica scientia,Series A, 2024, 44(3): 621-636. |
[3] | Cheng Qingfang,Liao Jiafeng,Yuan Yanxiang. Existence of Positive Solutions for a Class of Schrödinger-Newton Systems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1373-1381. |
[4] | Xu Jiafa, Yang Zhichun. Positive Solutions for a High Order Riemann-Liouville Type Fractional Impulsive Differential Equation Integral Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2023, 43(1): 53-68. |
[5] | Yu Duan,Xin Sun. Existence of Positive Solutions for Klein-Gordon-Maxwell Systems with an Asymptotically Linear Nonlinearity [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1103-1111. |
[6] |
Zhenguo Wang.
Existence and Multiplicity of Solutions for a 2 |
[7] | Die Hu,Qi Gao. Multiple Solutions to Logarithmic Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 401-417. |
[8] | Tong Zhao,Hailong Yuan,Gaihui Guo. Positive Solutions of a Predator-Prey Model with Modified Leslie-Gower Type [J]. Acta mathematica scientia,Series A, 2022, 42(1): 176-186. |
[9] | Jiafa Xu,Honglin Luo,Lishan Liu. Positive Solutions for a Class of Fractional Difference Equations Boundary Value Problems with p-Laplacian Operator [J]. Acta mathematica scientia,Series A, 2021, 41(2): 402-414. |
[10] | Haixia Li. Existence and Uniqueness of Positive Solutions to an Unstirred Chemostat with Toxins [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1175-1185. |
[11] | Hailong Yuan,Yuping Wang,Yanling Li. Positive Solutions of a Predator-Prey Model with Cross Diffusion [J]. Acta mathematica scientia,Series A, 2019, 39(3): 545-559. |
[12] | Li Haixia. Stability and Uniqueness of Positive Solutions for a Food-Chain Model [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1094-1104. |
[13] | Liao Jiafeng, Li Hongying. Existence and Multiplicity of Positive Solutions for the Superlinear Kirchhoff-Type Equations with Critical Sobolev Exponent [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1119-1124. |
[14] | GAO Li-Meng. Multiplicity Results for A Boundary Value Problem with Double Parameter [J]. Acta mathematica scientia,Series A, 2015, 35(1): 50-55. |
[15] | LI Bo, LIU Han. Positive Solutions of the Predator-Prey Model with Diffusion and Cross Diffusion [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1578-1586. |
|