Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (1): 200-211.
Previous Articles Next Articles
Received:
2017-08-30
Online:
2020-02-26
Published:
2020-04-08
Supported by:
CLC Number:
Qikang Ran. SDE Driven by Fractional Brown Motion and Their Coefficients are Locally Linear Growth[J].Acta mathematica scientia,Series A, 2020, 40(1): 200-211.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Duncan T E , Hu Y Z , Pasik-Duncan B . Stochastic calculus for fractional Brownian motion, I:Theory. SIAM Journal of Control and Optimization, 2000, 38 (2): 582- 612
doi: 10.1137/S036301299834171X |
2 |
Elliott R J , Van Der Hoek J . A general fractional white theory and applications to finance. Mathematical Finance, 2003, 13 (2): 301- 330
doi: 10.1111/1467-9965.00018 |
3 |
Hu Y Z , Peng S G . Backward stochastic differential equation driven by fractional Brownian motion. SIAM Journal of Control and Optimization,, 2009, 48 (3): 1675- 1700
doi: 10.1137/070709451 |
4 |
肖艳清, 邹捷中. 分数布朗运动驱动下z一致连续的BSDE解的存在性与唯一性. 应用数学学报, 2012, 35 (2): 245- 251
doi: 10.3969/j.issn.0254-3079.2012.02.005 |
Xiao Y Q , Zou J Z . Existence and uniqueness of the solution to BSDE driven by fractional Brownian motion with the generator is uniformly continuous in z. Acta Mathematicae Applicatae Sinica, 2012, 35 (2): 245- 251
doi: 10.3969/j.issn.0254-3079.2012.02.005 |
|
5 |
Zähle M . Integration with respect to fractal functions and stochastic calculus I. Prob Theory Relat Fields, 1998, 111, 333- 344
doi: 10.1007/s004400050171 |
6 | Nualart D , Rǎscanu A . Differential equations driven by fractional Brownian motion. Collect Math, 2002, 53, 55- 81 |
7 | Maticiuc L , Nie T Y , Rǎscanu A . Fractional backward stochastic differential equations and fractional backward variational inequalities. Journal of Theoretical Probability, 2015, 28 (1): 337- 395 |
8 |
Guerra J , Nualart D . Stochastic differential equations driven by fractional brownian motion and standard Brownian motion. Stochastic Analysis and Applications, 2008, 26, 1053- 1075
doi: 10.1080/07362990802286483 |
9 |
冉启康. 分数Brown运动驱动的非Lipschitz随机微分方程. 纯粹数学与应用数学, 2016, 32 (6): 551- 561
doi: 10.3969/j.issn.1008-5513.2016.06.001 |
Ran Q K . Non-Lipschitz stochastic differential equations driven by fractional Brownian. Pure and Applied Mathematics, 2016, 32 (6): 551- 561
doi: 10.3969/j.issn.1008-5513.2016.06.001 |
|
10 |
王赢, 王向荣. 一类非Lipschitz条件的Backward SDE适应解的存在唯一性. 应用概率统计, 2003, 19 (3): 245- 251
doi: 10.3969/j.issn.1001-4268.2003.03.004 |
Wang Y , Wang X R . Adapted solutions of backward SDE with non-Lipschitz coefficients. Chinese Journal of Applied Probability and Statistics, 2003, 19 (3): 245- 251
doi: 10.3969/j.issn.1001-4268.2003.03.004 |
|
11 |
冉启康. 一类非Lipschitz条件的BSDE解的存在唯一性. 工程数学学报, 2006, 23 (2): 286- 292
doi: 10.3969/j.issn.1005-3085.2006.02.011 |
Ran Q K . Existence and uniqueness of solutions on a class of BSDEs with non-Lipschitz coefficient. Chinese Journal of Engineering Mathematics, 2006, 23 (2): 286- 292
doi: 10.3969/j.issn.1005-3085.2006.02.011 |
|
12 |
毛伟. 带有非Lipschitz系数的跳扩散微分方程解的存在性. 华中师范大学学报(自然科学版), 2016, 50 (1): 10- 14
doi: 10.3969/j.issn.1000-1190.2016.01.003 |
Mao W . Existence of the solutions to jump-diffusion differential equations with non-Lipschitz coefficients. Journal of Central China Normal University (Natural Sciences), 2016, 50 (1): 10- 14
doi: 10.3969/j.issn.1000-1190.2016.01.003 |
|
13 |
Albeverio S , Brzeniak Z , Wu J L . Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients. Journal of Mathematical Analysis and Applications, 2010, 371, 309- 322
doi: 10.1016/j.jmaa.2010.05.039 |
14 | Majka M B. A note on existence of global solutions and invariant measures for jump SDEs with locally one-sided Lipschitz drift. 2016, arXiv: 1612.03824[math.PR] |
15 | Samko S G , Kilbas A A , Marichev O I . Fractional Integrals and Derivatives:Theory and Applications. Yvendon:Gordon and Breach, 1993, 77- 82 |
16 | 张骅月.分数布朗运动及其在保险金融中的应用[D].天津:南开大学, 2007 |
Zhang H Y. Fractional Brownian Motion and Its Application in Insurance Finance[D]. Tianjin: Nankai University, 2007 | |
17 | 张卫国, 肖炜麟. 分数布朗运动下股本权证定价研究:模型与参数估计. 北京: 科学出版社, 2013 |
Zhang W G , Xiao W L . Equity Warrant Pricing Under Fractional Brownian Motion:Model and Parameter Estimation. Beijing: Science Press, 2013 |
[1] |
Chen Yong,Li Ying,Sheng Ying,Gu Xiangmeng.
Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a Type of Gaussian Noise with Hurst Parameter |
[2] | Chen Yong,Gu Xiangmeng. An Improved Berry-Esséen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes [J]. Acta mathematica scientia,Series A, 2023, 43(3): 855-882. |
[3] | Yi Ding,Jingjun Guo. Pricing Asian Options Under Time-Changed Mixed Fractional Brownian Motion with Transactions Costs [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1135-1146. |
[4] | Liping Xu,Zhi Li. Transportation Inequalities for Mixed Stochastic Differential Equations [J]. Acta mathematica scientia,Series A, 2021, 41(1): 227-236. |
[5] | Liang Wu. Hurst Parameter Under Finite Second Moment and Under Heavy Tails [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1072-1082. |
[6] | Liheng Sang,Zhenlong Chen,Xiaozhen Hao. Smoothness for the Renormalized Self-Intersection Local Time of Bifractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2020, 40(3): 796-810. |
[7] | Zhaoqiang Yang. Pricing European Lookback Option in a Special Kind of Mixed Jump-Diffusion Black-Scholes Model [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1514-1531. |
[8] | Jing Cui,Qiuju Liang,Nana Bi. Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2019, 39(3): 570-581. |
[9] | ZHANG Hua-Yue, CHEN Wan-Hua, QU Li-An. Dynamic Below-Target Semi-Variance Risk Measure in a Fractional |Black-Scholes Market [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1674-1682. |
[10] | Liu Shaoyue; Yang Xiangqun. Optimal Portfolio in a Fractional Black-Scholes Model with Arbitrary Hurst Parameter [J]. Acta mathematica scientia,Series A, 2008, 28(4): 742-746. |
|