Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (1): 221-233.
Previous Articles Next Articles
Zhongwei Cao1(),Xiangdan Wen2,*(
),Wei Feng3,Li Zu4
Received:
2018-08-29
Online:
2020-02-26
Published:
2020-04-08
Contact:
Xiangdan Wen
E-mail:caozw963@sina.com;xdwen0502@yeah.net
Supported by:
CLC Number:
Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations[J].Acta mathematica scientia,Series A, 2020, 40(1): 221-233.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Kermack W O , McKendrick A G . Contributions to the mathematical theory of epidemics-I. Bull Math Biol, 1991, 53 (1/2): 33- 55 |
2 | Ma Z N, Zhou Y C, Wu J H. Modeling and Dynamics of Infectious Diseases. Beijing:Higher Education Press, 2009 |
3 |
Zhang J , Jin Z , Sun G Q , et al. Analysis of rabies in China:transmission dynamics and control. PloS One, 2011, 6 (7): e20891
doi: 10.1371/journal.pone.0020891 |
4 | Buonomo B , D'Onofrio A , Lacitignola D . Global stability of an SIR epidemic model with information dependent vaccination. Math Biosci, 2008, 216 (1): 9- 16 |
5 |
Korobeinikov A , Wake G C . Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl Math Lett, 2002, 15 (8): 955- 960
doi: 10.1016/S0893-9659(02)00069-1 |
6 | Korobeinikov A . Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission. Bull Math Biol, 2006, 30, 615- 626 |
7 | Blower S . Modelling the genital herpes epidemic. Herpes, 2004, 3, 138A- 146A |
8 | Wildy P, Field H J, Nash A A. Classical herpes latency revisited//Mahy B W J, Minson A C, Darby G K, et al. Virus Persistence Symposium. Cambridge:Cambridge University Press, 1982, 33:133-168 |
9 |
Tudor D . A deterministic model for herpes infections in human and animal populations. SIAM Rev, 1990, 32 (1): 136- 139
doi: 10.1137/1032003 |
10 | Vargas-De-León C . On the global stability of infectious disease models with relapse. Abstraction and Application, 2013, 9, 50- 61 |
11 |
Gray A , Greenhalgh D , Hu L , et al. A stochastic differential equation SIS epidemic model. SIAM J Appl Math, 2011, 71 (3): 876- 902
doi: 10.1137/10081856X |
12 |
Lin Y G , Jiang D Q , Wang S . Stationary distribution of a stochastic SIS epidemic model with vaccination. Physica A, 2014, 394, 187- 197
doi: 10.1016/j.physa.2013.10.006 |
13 | Lahrouz A , Omari L , Kiouach D . Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal Model Control, 2011, 16 (1): 59- 76 |
14 | Lahrouz A , Settati A . Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation. Appl Math Comput, 2014, 233, 10- 19 |
15 |
Bai Z G , Zhou Y C . Existence of two periodic solutions for a non-autonomous SIR epidemic model. Appl Math Model, 2011, 35 (1): 382- 391
doi: 10.1016/j.apm.2010.07.002 |
16 |
Bai Z G , Zhou Y C , Zhang T L . Existence of multiple periodic solutions for an SIR model with seasonality. Nonlinear Anal TMA, 2011, 74 (11): 3548- 3555
doi: 10.1016/j.na.2011.03.008 |
17 |
Kuniya T . Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients. Appl Math Lett, 2014, 27, 15- 20
doi: 10.1016/j.aml.2013.08.008 |
18 | Li T , Li Y G , Hethcote H W . Periodic traveling waves in SIRS endemic models. Math Comput Model, 2009, 49 (1/2): 393- 401 |
19 |
Lin Y G , Jiang D Q , Liu T . Nontrivial periodic solution of a stochastic epidemic model with seasonal variation. Appl Math Lett, 2015, 45, 103- 107
doi: 10.1016/j.aml.2015.01.021 |
20 | Ji C Y , Jiang D Q . The threshold of a non-autonomous SIRS epidemic model with stochastic perturbations. Math Meth Appl Sci, 2016, 40 (5): 1773- 1782 |
21 |
Liu Q , Jiang D Q , Shi N Z , et al. Nontrivial periodic solution of a stochastic non-autonomous SISV epidemic model. Physica A, 2016, 462, 837- 845
doi: 10.1016/j.physa.2016.06.041 |
22 | Mao X R. Stochastic Differential Equations and Their Applications. Chichester:Horwood, 1997 |
23 | Khasminskii R. Stochastic Stability of Differential Equations. Berlin:Springer, 2011 |
24 |
Higham D J . An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev, 2001, 43, 525- 546
doi: 10.1137/S0036144500378302 |
[1] | Wu Wenbin, Ren Xue, Zhang Ran. Traveling Waves for a Discrete Diffusive Vaccination Model with Delay [J]. Acta mathematica scientia,Series A, 2025, 45(3): 858-874. |
[2] | Ren Chenchen, Yang Sudan. Existence and Uniqueness of Solutions for Sub-Linear Heat Equations with Almost Periodic Coefficients [J]. Acta mathematica scientia,Series A, 2025, 45(1): 31-43. |
[3] | Zhang Wenwen, Liu Zhijun, Wang Qinglong. Exponential Extinction, Stationary Distribution and Probability Density Function of A Stochastic Predator-Prey Model with Ornstein-Uhlenbeck Process [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1368-1379. |
[4] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[5] | Gao Caixia, Zhao Dongxia. The Delayed Control and Input-to-State Stability of ARZ Traffic Flow Model with Disturbances [J]. Acta mathematica scientia,Series A, 2024, 44(4): 960-977. |
[6] | Yang Jiaopeng, Liang Yong. Solitary and Periodic Solutions of the Generalized b-equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 670-686. |
[7] | Li Dan,Wei Fengying,Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1595-1606. |
[8] | Wang Zihuan,Wang Chao. Symmetric and Periodic Solutions for a Class of Weakly Coupled Systems Composed of Two Particles with Obstacles [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1427-1439. |
[9] |
Pang Yuting,Zhao Dongxia,Zhao Xin,Gao Caixia.
The PDP Boundary Control for a Class of 2 |
[10] | Zou Yonghui,Xu Xin. Existence of Back-Flow Point for the Two-Dimensional Compressible Prandtl Equation [J]. Acta mathematica scientia,Series A, 2023, 43(3): 691-701. |
[11] | Yanjun Zhao,Xiaohui Sun,Li Su,Wenxuan Li. Qualitative Analysis of Stochastic SIRS Epidemic Model with Logistic Growth and Beddington-DeAngelis Incidence Rate [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1861-1872. |
[12] | Yu Yang. Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1864-1870. |
[13] | Liya Liu,Daqing Jiang. Global Dynamics of a Stochastic Chemostat Model with General Response Function and Wall Growth [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1912-1924. |
[14] | Dongxia Fan,Dongxia Zhao,Na Shi,Tingting Wang. The PDP Feedback Control and Stability Analysis of a Diffusive Wave Equation [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1088-1096. |
[15] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
|