Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1204-1223.
Previous Articles Next Articles
Received:
2018-03-05
Online:
2020-10-26
Published:
2020-11-04
Supported by:
CLC Number:
Shoufu Tian. On the Behavior of the Solution of a Weakly Dissipative Modified Two-Component Dullin-Gottwald-Holm System[J].Acta mathematica scientia,Series A, 2020, 40(5): 1204-1223.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Camassa R , Holm D . An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71, 1661- 1664
doi: 10.1103/PhysRevLett.71.1661 |
2 |
Camassa R , Holm D , Hyman J . A new integrable shallow water equation. Adv Appl Mech, 1994, 31, 1- 33
doi: 10.1016/S0065-2156(08)70254-0 |
3 |
Constantin A , Escher J . Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica, 1998, 181, 229- 243
doi: 10.1007/BF02392586 |
4 |
Constantin A , Lannes D . The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch Ration Mech Anal, 2009, 192, 165- 186
doi: 10.1007/s00205-008-0128-2 |
5 |
Constantin A , Kolev B . On the geometric approach to the motion of inertial mechanical systems. J Phys A, 2002, 35 (32): R51- R79
doi: 10.1088/0305-4470/35/32/201 |
6 |
Fokas A , Fuchssteiner B . Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys D, 1981, 4, 47- 66
doi: 10.1016/0167-2789(81)90004-X |
7 |
Ghidaglia J M . Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time. J Differential Equations, 1988, 74, 369- 390
doi: 10.1016/0022-0396(88)90010-1 |
8 |
Guo F , Gao H , Liu Y . On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system. J London Math Soc, 2012, 86, 810- 834
doi: 10.1112/jlms/jds035 |
9 |
Guo Z . Blow-up and global solutions to a new integrable model with two components. J Math Anal Appl, 2010, 372, 316- 327
doi: 10.1016/j.jmaa.2010.06.046 |
10 |
Holm D , Ó Náraigh L , Tronci C . Singular solutions of a modified two-component Camassa-Holm equation. Phys Rev E, 2009, 79, 016601
doi: 10.1103/PhysRevE.79.016601 |
11 |
Ivanov R . Two-component integrable systemsmodelling shallow water waves:The constant vorticity case. Wave Motion, 2009, 46, 389- 396
doi: 10.1016/j.wavemoti.2009.06.012 |
12 | Ionescu-Kruse D . Variational derivation of the Camassa-Holm shallow water equation. J Nonlinear Math Phys, 2007, 14, 303- 312 |
13 | Kato T. Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations//Everitt N. Spectral Theory and Differential Equations. Berlin: Springer-Verlag, 1975 |
14 |
Mustafa O G . Existence and uniqueness of low regularity solutions forthe Dullin-Gottwald-Holm equation. Comm Math Phys, 2006, 265, 189- 200
doi: 10.1007/s00220-006-1532-9 |
15 |
Novruzov E . Blow-up of solutions for the dissipative Dullin-Gottwald-Holm equation with arbitrary coefficients. J Differential Equations, 2016, 261, 1115- 1127
doi: 10.1016/j.jde.2016.03.034 |
16 |
Ott E , Sudan RN . Damping of solitary waves. Phys Fluids, 1970, 13, 1432- 1434
doi: 10.1063/1.1693097 |
17 | Tian L , Gui G , Liu L . On the Cauchy problem and the scattering problem for the Dullin-Gottwald-Holm equation. Comm Math Phys, 2005, 257 (3): 667- 701 |
18 |
Zhu M , Xu J . On the wave-breaking phenomena for the periodic two-component Dullin-Gottwald-Holm system. J Math Anal Appl, 2012, 391, 415- 428
doi: 10.1016/j.jmaa.2012.02.058 |
19 |
Zhai P P , Guo Z G , Wang W M . Wave breaking phenomenon for a modified two-component Dullin-Gottwald-Holm equation. J Math Phys, 2014, 55, 093101
doi: 10.1063/1.4894368 |
20 |
Zhou Y . Blow-up of solutions to the DGH equation. J Funct Anal, 2007, 250, 227- 248
doi: 10.1016/j.jfa.2007.04.019 |
[1] | Li Jianjun,Li Yangchen. The Existence and Blow-Up of Solutions for a Class of Fractional $ p$-Laplace Diffusion Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2025, 45(2): 465-478. |
[2] | Meng Zhiying, Yin Zhaoyang. Global Gevrey Regularity and Analyticity of a Weakly Dissipative Camassa-Holm Equation [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1537-1549. |
[3] | Shi Jincheng, Liu Yan. Global Existence and Blow-Up for Semilinear Third Order Evolution Equation with Different Power Nonlinearities [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1550-1562. |
[4] | Gao Xiaoru, Li Jianjun, Tu Jun. Blow-Up of Solutions for a Class of Fractional Diffusion Equations with Time Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1230-1241. |
[5] | Wang Weimin, Yan Wei. Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 595-608. |
[6] | Li Fengjie, Li Ping. Blow-up Solutions in a p-Kirchhoff Equation of Pseudo-Parabolic Type [J]. Acta mathematica scientia,Series A, 2024, 44(3): 717-736. |
[7] | Jian Hui, Gong Min, Wang Li. On the Blow-Up Solutions of Inhomogeneous Nonlinear Schrödinger Equation with a Partial Confinement [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1350-1372. |
[8] | Shen Xuhui,Ding Juntang. Blow-Up Conditions of Porous Medium Systems with Gradient Source Terms and Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1417-1426. |
[9] | Ouyang Baiping. Blow-up of Solutions to the Euler-Poisson-Darboux-Tricomi Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2023, 43(1): 169-180. |
[10] | Feng Meiqiang, Zhang Xuemei. On the Optimal Global Estimates of Boundary Blow-up Solutions to the Monge-Ampère Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 181-202. |
[11] | Zhen Qiu,Guangwu Wang. Blow-Up of the Smooth Solutions to the Quantum Navier-Stokes-Landau-Lifshitz Equations [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1074-1088. |
[12] | Lianfeng Yang,Xiaoyu Zeng. Existence and Blow-Up Behavior of Ground State Solutions for Pseudo-Relativistic Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 165-175. |
[13] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[14] | Jingran He,Helin Guo,Wenqing Wang. A p-Laplace Eigenvalue Problem with Coercive Potentials [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1323-1332. |
[15] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
|