| 1 | Camassa R , Holm D . An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71, 1661- 1664 | | 2 | Camassa R , Holm D , Hyman J . A new integrable shallow water equation. Adv Appl Mech, 1994, 31, 1- 33 | | 3 | Constantin A , Escher J . Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica, 1998, 181, 229- 243 | | 4 | Constantin A , Lannes D . The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch Ration Mech Anal, 2009, 192, 165- 186 | | 5 | Constantin A , Kolev B . On the geometric approach to the motion of inertial mechanical systems. J Phys A, 2002, 35 (32): R51- R79 | | 6 | Fokas A , Fuchssteiner B . Symplectic structures, their B?cklund transformation and hereditary symmetries. Phys D, 1981, 4, 47- 66 | | 7 | Ghidaglia J M . Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time. J Differential Equations, 1988, 74, 369- 390 | | 8 | Guo F , Gao H , Liu Y . On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system. J London Math Soc, 2012, 86, 810- 834 | | 9 | Guo Z . Blow-up and global solutions to a new integrable model with two components. J Math Anal Appl, 2010, 372, 316- 327 | | 10 | Holm D , ó Náraigh L , Tronci C . Singular solutions of a modified two-component Camassa-Holm equation. Phys Rev E, 2009, 79, 016601 | | 11 | Ivanov R . Two-component integrable systemsmodelling shallow water waves:The constant vorticity case. Wave Motion, 2009, 46, 389- 396 | | 12 | Ionescu-Kruse D . Variational derivation of the Camassa-Holm shallow water equation. J Nonlinear Math Phys, 2007, 14, 303- 312 | | 13 | Kato T. Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations//Everitt N. Spectral Theory and Differential Equations. Berlin: Springer-Verlag, 1975 | | 14 | Mustafa O G . Existence and uniqueness of low regularity solutions forthe Dullin-Gottwald-Holm equation. Comm Math Phys, 2006, 265, 189- 200 | | 15 | Novruzov E . Blow-up of solutions for the dissipative Dullin-Gottwald-Holm equation with arbitrary coefficients. J Differential Equations, 2016, 261, 1115- 1127 | | 16 | Ott E , Sudan RN . Damping of solitary waves. Phys Fluids, 1970, 13, 1432- 1434 | | 17 | Tian L , Gui G , Liu L . On the Cauchy problem and the scattering problem for the Dullin-Gottwald-Holm equation. Comm Math Phys, 2005, 257 (3): 667- 701 | | 18 | Zhu M , Xu J . On the wave-breaking phenomena for the periodic two-component Dullin-Gottwald-Holm system. J Math Anal Appl, 2012, 391, 415- 428 | | 19 | Zhai P P , Guo Z G , Wang W M . Wave breaking phenomenon for a modified two-component Dullin-Gottwald-Holm equation. J Math Phys, 2014, 55, 093101 | | 20 | Zhou Y . Blow-up of solutions to the DGH equation. J Funct Anal, 2007, 250, 227- 248 |
|