| 1 | Fritz J . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math, 1979, 28, 235- 268 | | 2 | Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Math Z, 1981, 177, 323- 340 | | 3 | Strauss W A . Nonlinear scattering theory at low energy. J Funct Anal, 1981, 41, 110- 133 | | 4 | Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52, 378- 406 | | 5 | Zhou Y . Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J Partial Differential Equations, 1995, 8, 135- 144 | | 6 | Georgiev V , Lindblad H , Sogge C D . Weighted Strichartz estimates and global existence for semilinear wave equations. Amer J Math, 1997, 119, 1291- 1319 | | 7 | Shaeffer J . The equation $u_{tt}-\Delta u=|u|^{p}$ for the critical value of p. Proc Roy Soc Edinburgh Sect A, 1985, 101, 31- 44 | | 8 | Yordanov B T , Zhang Q S . Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231, 361- 374 | | 9 | Zhou Y . Blow up of solutions to semilinear wave equations with critical exponent in high diensions. Chin Ann Math Ser B, 2007, 28, 205- 212 | | 10 | Sobajima M, Wakasa K. Finite time blowup of solutions to semilinear wave equation in an exterior domain. 2018, arXiv: 1812.09128 | | 11 | Du Y , Metcalfe J , Sogge C D , Zhou Y . Concerning the Strauss conjecture and almost global existence for nonlinear Dirichlet-wave equations in 4-dimensions. Comm Partial Differential Equations, 2008, 33 (79): 1487- 1506 | | 12 | Hidanoidano K , Metcalfe J , Smith H F , et al. On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles. Trans Amer Math Soc, 2010, 362, 2789- 2809 | | 13 | Yu X . Generalized Strichartz estimates on perturbed wave equation and applications on Strauss conjecture. Differential Integral Equations, 2011, 24, 443- 468 | | 14 | Zhou Y , Han W . Blow-up for solutions to semilinear wave equations with variable coefficients and boundary. J Math Anal Appl, 2011, 374, 585- 601 | | 15 | Zha D , Zhou Y . Lifespan of classical solutions to quasilinear wave equations outside of a star-shaped obstacle in four space dimensions. J Math Pures Appl, 2015, 103 (9): 788- 808 | | 16 | Lai N A , Zhou Y . Finite time blow up to critical semilinear wave equation outside the ball in 3D. Nonlinear Anal, 2015, 125, 550- 560 | | 17 | Lai N A , Zhou Y . Nonexistence of global solutions to critical semilinear wave equationn in exterior domain in high dimensions. Nonlinear Anal, 2016, 143, 89- 104 | | 18 | Zhang Q D . Global existence and finite time blow up for the weighted semilinear wave equation. Nonlinear Analysis: Real World Applications, 2020, 51, 103006 | | 19 | Ikeda M , Sobajima M . Remark on upper bound for lifespan of solutions to evolution equations in a two-dimensional exterior domain. J Math Anal Appl, 2019, 470 (1): 318- 326 | | 20 | Ikeda M, Sobajima M. Upper bound for lifespan of solutions to certain semilinear parabolic, dispersive and hyperbolic equations via a unified test function method. 2017, arXiv: 1710.06780 |
|