Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1319-1332.
Previous Articles Next Articles
Shoujun Huang*(),Xiwang Meng(
)
Received:
2019-03-29
Online:
2020-10-26
Published:
2020-11-04
Contact:
Shoujun Huang
E-mail:sjhuang@ahnu.edu.cn;3572861950@qq.com
Supported by:
CLC Number:
Shoujun Huang,Xiwang Meng. Improved Ordinary Differential Inequality and Its Application to Semilinear Wave Equations[J].Acta mathematica scientia,Series A, 2020, 40(5): 1319-1332.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Almenar P , J'odar L , Matin J A . Mixed problems for the time-dependent telegraph equation: continuous numerical solutions with a priori error bounds. Math Comput Modelling, 1997, 25, 31- 44 |
2 | Kato M , Sakuraba M . Global existence and blow-up for semilinear damped wave equations in three space dimensions. Nonlinear Analysis, 2019, 182, 209- 225 |
3 |
Li T T , Zhou Y . Breakdown of solutions to $\Box u+u_t=|u|^{1+\alpha}$. Discrete Contin Dyn Syst, 1995, 1, 503- 520
doi: 10.3934/dcds.1995.1.503 |
4 |
Lai N A , Takamura H , Wakasa K . Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263, 5377- 5394
doi: 10.1016/j.jde.2017.06.017 |
5 |
Ikeda M , Sobajima M . Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data. Math Ann, 2018, 372, 1017- 1040
doi: 10.1007/s00208-018-1664-1 |
6 |
Palmieri A , Reissig M . A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differential Equations, 2019, 266, 1176- 1220
doi: 10.1016/j.jde.2018.07.061 |
7 |
D'Abbicco M . The threshold of effective damping for semilinear wave equation. Math Methods Appl Sci, 2015, 38, 1032- 1045
doi: 10.1002/mma.3126 |
8 | D'Abbicco M , Lucente S . A modified test function method for damped wave equation. Adv Nonlinear Stud, 2013, 13, 863- 889 |
9 |
Zhang Q S . A blow-up result for a nonlinear wave equation with damping: the critical case. C R Acad Sci Paris Ser I Math, 2001, 333, 109- 114
doi: 10.1016/S0764-4442(01)01999-1 |
10 |
Zhou Y . Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chin Ann Math Ser B, 2007, 28, 205- 212
doi: 10.1007/s11401-005-0205-x |
11 |
Lai N A , Zhou Y . The sharp lifespan extimate for semilinear damped wave equation with Fujita critical power in higher dimensions. J Math Pures Appl, 2019, 123, 229- 243
doi: 10.1016/j.matpur.2018.04.009 |
12 | Yordanov B T , Zhang Q S . Finite time blow up for critical wave equations in high dimensions. Journal of Functional Analysis, 2006, 231, 361- 374 |
13 |
Wirth J . Wave equations with time-dependent dissipation I. Non-effective dissipation. J Differential Equations, 2006, 222, 487- 514
doi: 10.1016/j.jde.2005.07.019 |
14 |
Wirth J . Wave equation with time-dependent dissipation Ⅱ. Effective dissipation. J Differential Equations, 2007, 232, 74- 103
doi: 10.1016/j.jde.2006.06.004 |
15 | Wakasugi Y. Critical Exponent for the Semilinear Wave Equation with Scale Invariant Damping//Ruzhansky M, Turunen V, et al. Fourier Analysis. Boston: Birkhäuser, 2014: 375-390 |
16 | Li Y C . Classical solutions for fully nonlinear wave equuations with dissipaction (in Chinese). Chin Ann Math Ser A, 1996, 17, 451- 466 |
17 |
Todorova G , Yordanov B . Critical exponent for a nonlinear wave equation with damping. J Differ Equ, 2001, 174, 464- 489
doi: 10.1006/jdeq.2000.3933 |
18 |
Nishihara K . $L_p$-$L_q$ estimates of solutions to the damped wave quation in 3-dimensional space and their application. Math Z, 2003, 244, 631- 649
doi: 10.1007/s00209-003-0516-0 |
19 |
Takamura H . Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations. Nonlinear Analysis, 2015, 125, 227- 240
doi: 10.1016/j.na.2015.05.024 |
[1] | Feng Zhendong, Guo Fei, Li Yuequn. Breakdown of Solutions to a Weakly Coupled System of Semilinear Wave Equations [J]. Acta mathematica scientia,Series A, 2025, 45(3): 726-747. |
[2] | Wang Zenggui. Cauchy Problem for the Evolution of Cells and Tissue During Curvature-Controlled Growth [J]. Acta mathematica scientia,Series A, 2023, 43(3): 771-784. |
[3] | Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381. |
[4] | Jinglei Zhao,Jiacheng Lan,Shanshan Yang. Lifespan Estimate of Damped Semilinear Wave Equation in Exterior Domain with Neumann Boundary Condition [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1033-1041. |
[5] | Changwang Xiao,Fei Guo. Global Existence and Blowup Phenomena for a Semilinear Wave Equation with Time-Dependent Damping and Mass in Exponentially Weighted Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1568-1589. |
[6] | Shoujun Huang,Juan Wang. Blow up of Solutions to Semilinear Wave Equations with Variable Coefficient for Nonlinearity in an N-Dimensional Exterior Domain [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1259-1268. |
[7] | Hongbiao Jiang,Haihang Wang. Lifespan Estimation of Solutions to Cauchy Problem of Semilinear Wave Equation [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1146-1157. |
[8] | Duan Shuangshuang, Huang Shoujun. Blow up of Periodic Solutions for a Class of Keller-Segel Equations Arising in Biology [J]. Acta mathematica scientia,Series A, 2017, 37(2): 326-341. |
[9] | Geng Jinbo, Yang Zhenzhen, Lai Ning-An. Blow up and Lifespan Estimates for Initial Boundary Value Problem of Semilinear Schrödinger Equations on Half-Life [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1186-1195. |
[10] | Hao Xin-sheng. An Inverse |problem of |a Semilinear Wave Equation [J]. Acta mathematica scientia,Series A, 2000, 20(zk): 602-609. |
[11] | Zhang Quande. On Global Existence,Blow Up and Life Span of Nonlinear Hyperbolic Equations [J]. Acta mathematica scientia,Series A, 1999, 19(1): 45-52. |
|