Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1381-1392.
Previous Articles Next Articles
Received:
2019-12-18
Online:
2020-10-26
Published:
2020-11-04
Contact:
Jinghu Yu
E-mail:sdsgzj@163.com;yujh67@126.com
CLC Number:
Jing Zhang,Jinghu Yu. Parameter Resolution of Estimation Methods for Linear Regression Models[J].Acta mathematica scientia,Series A, 2020, 40(5): 1381-1392.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 郭永康. 光学教程. 成都: 四川大学出版社, 1996 |
Guo Y K . Optical Tutorial. Chengdu: Sichuan University Press, 1996 | |
2 | 姚彦鑫. 低采样率高分辨率压缩功率谱估计方法的仿真研究. 电波科学学报, 2016, 31 (6): 1172- 1179 |
Yao Y X . Simulation on low sampling rate high resolution compressed power spectrum estimation method. Chinese Journal of Radio Science, 2016, 31 (6): 1172- 1179 | |
3 | 张翼, 柯亨玉, 程丰, 李国玮. 基于MUSIC算法高频地波雷达的角分辨率. 电波科学学报, 2003, 18 (3): 264- 269 |
Zhang Y , Ke H Y , Cheng F , Li G W . Angle resolution of HK ground wave radar based on MUSIC scheme. Chinese Journal of Radio Science, 2003, 18 (3): 264- 269 | |
4 | Wang Q , Liang R , Rahardja S , Zhao L , Zou C , Zhao L , Vasques C . Piecewise-linear frequency shifting algorithm for frequency resolution enhancement in digital hearing aids. Applied Sciences, 2017, 7 (4): 1- 18 |
5 |
Candan C . Fine resolution frequency estimation from three DFT samples:case of windowed data. Signal Processing, 2015, 114, 245- 250
doi: 10.1016/j.sigpro.2015.03.009 |
6 | 鲁纳纳, 余旌胡. EM算法的参数分辨率. 数学物理学报, 2019, 39 (3): 638- 648 |
Lu N N , Yu J H . Research on resolution based on EM algorithm. Acta Mathematica Scientia, 2019, 39 (3): 638- 648 | |
7 | 茆诗松, 程依明, 濮晓龙. 概率论与数理统计教程. 北京: 高等教育出版社, 2013 |
Mao S S , Cheng Y M , Pu X L . Probability Theory and Mathematical Statistics Tutorial. Beijing: Higher Education Press, 2013 | |
8 |
Wang P P , Yu Q , Hu Y J , Miao C X . Online detection of broken rotor bar fault in induction motors by combining estimation of signal parameters via min-norm algorithm and square method. Chinese Journal of Mechanical Engineering, 2017, 30, 1285- 1295
doi: 10.1007/s10033-017-0185-2 |
9 | 冯守平, 杨桂元. 关于加权全最小一乘法. 应用概率统计, 2009, 25 (2): 135- 142 |
Feng S P , Yang G Y . On weighted total least absolute deviations. Chinese Journal of Applied Probability and Statistics, 2009, 25 (2): 135- 142 | |
10 | 洪文, 吴本忠. LING4.0 for Windows最优化软件及其应用. 北京: 北京大学出版社, 2001 |
Hong W , Wu B Z . LING4.0 for Windows Optimization Software and Its Application. Beijing: Peking University Press, 2001 | |
11 | 王千, 王成, 冯振元, 等. K-means聚类算法研究综述. 电子设计工程, 2012, 20 (7): 21- 24 |
Wang Q , Wang C , Feng Z Y , et al. Review of k-means clustering algorithm. Electronic Design Engineering, 2012, 20 (7): 21- 24 | |
12 | 高新波, 谢维信. 模糊聚类理论发展及应用的研究进展. 科学通报, 1999, 44 (21): 2241- 2251 |
Gao X B , Xie W X . Research progress in the development and application of fuzzy clustering theory. Chinese Science Bulletin, 1999, 44 (21): 2241- 2251 | |
13 |
Alex R , Alessandro L . Cluster by fast search and find of density peaks. Science, 2014, 344, 1492- 1496
doi: 10.1126/science.1242072 |
[1] | Wei Yibing, Zhu Fukang. Autoregressive Model for Large-scale Three-mode Networks [J]. Acta mathematica scientia,Series A, 2024, 44(3): 783-803. |
[2] | Yu Yikang,Niu Jing. A Kind of Numerical Algorithm for Elliptic Interface Problem [J]. Acta mathematica scientia,Series A, 2023, 43(3): 883-895. |
[3] | Chen Fei,Weiyin Fei. Consistency of Least Squares Estimation to the Parameter for Stochastic Differential Equations Under Distribution Uncertainty [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1499-1513. |
[4] | Wang Xiaoyan, Ding Yiming. A Filtering Algorithm for Removing Cauchy Noise in Images [J]. Acta mathematica scientia,Series A, 2018, 38(4): 823-832. |
[5] | PENG Zhuo-Hua. The Bisymmetric Least Squares Solutions of the General Coupled |Matrix Equations with A Submatrix Constraint [J]. Acta mathematica scientia,Series A, 2015, 35(1): 131-150. |
[6] | XIE Dong-Xiu, ZHANG Zhong-Zhi. Structured Matrix Nearness Problem with Least Square Spectra Constraint and Its Perturbation Analysis [J]. Acta mathematica scientia,Series A, 2013, 33(1): 37-45. |
[7] | SHANG Li-Na, ZHANG Kai-Yuan. An Iterative Method for the Least Squares Centrosymmetric Solution of the Matrix Equation AXB+CXD=F [J]. Acta mathematica scientia,Series A, 2010, 30(3): 776-783. |
[8] | LUO Xian-Hua, LI Yuan, MA Yun-Bei, ZHOU Yong. Varying-Coefficient Partially Linear Models with Censored Data [J]. Acta mathematica scientia,Series A, 2010, 30(1): 71-85. |
[9] |
Li Guoliang; Liu Luqin.
Strong Consistency of a Class of Estimators in Partial Linear Model under Martingale Difference Sequence [J]. Acta mathematica scientia,Series A, 2007, 27(5): 788-801. |
[10] | Hu Shuhe. A Large Deviation for the Least Squares Estimators in Nonlinear Regression With m0 Dependent Errors [J]. Acta mathematica scientia,Series A, 1998, 18(1): 56-62. |
|