Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (6): 1568-1589.
Previous Articles Next Articles
Changwang Xiao1(),Fei Guo1,2,*(
)
Received:
2019-10-25
Online:
2020-12-26
Published:
2020-12-29
Contact:
Fei Guo
E-mail:15996269522@163.com;guof@njnu.edu.cn
Supported by:
CLC Number:
Changwang Xiao,Fei Guo. Global Existence and Blowup Phenomena for a Semilinear Wave Equation with Time-Dependent Damping and Mass in Exponentially Weighted Spaces[J].Acta mathematica scientia,Series A, 2020, 40(6): 1568-1589.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Adams A , John F . Sobolev Spaces. Second Edition. New York: Academic Press, 1975 |
2 | Böhme C , Reissig M . A scale-invariant Klein-Gordon model with time-dependent potential. Ann Univ Ferrara Sez Ⅶ Sci Mat, 2012, 58 (2): 229- 250 |
3 | Corduneanu C . Principles of Differential and Integral Equations. Boston: Allyn and Bacon Inc, 1971 |
4 | D'Abbicco M . The threshold of effective damping for semilinear wave equation. Math Methods Appl Sci, 2015, 38 (10): 1032- 1045 |
5 | Fujita H . On the blowing up of solutions of the Cauchy problem for ut=△u+u1+α. J Fac Sci Univ Tokyo Sect I, 1966, 13: 109- 124 |
6 | Georgiev V , Lindblad H , Sogge C D . Weighted Strichartz estimates and global existence for semilinear wave equations. Amer J Math, 1997, 119 (6): 1291- 1319 |
7 | Ikeda M, Wakasugi Y. Global well-posedness for the semilinear wave equation with time dependent damping in the overdamping case. 2017, arXiv: 1708.08044 |
8 | Ikehata R , Tanizawa K . Global existence of solutions for semilinear damped-wave equations in ${\Bbb R}$n with noncompactly supported initial data. Nonlinear Anal, 2015, 61 (7): 1189- 1208 |
9 | Li T T , Zhou Y . Breakdown of solutions to □u+ut=|u|1+α. Discrete Contin Dyn Syst, 1995, 1 (4): 503- 520 |
10 | Lindblad H , Sogge C D . On existence and scattering with minimal regularity for semilinear wave equations. J Funct Anal, 1995, 130 (2): 357- 426 |
11 | Lin J , Nishihara K , Zhai J . Critical exponent for the semilinear wave equation with time-dependent damping. Discrete Contin Dyn Syst, 2012, 32 (12): 4307- 4320 |
12 | Nishihara K , Zhai J . Asymptotic behavior of solutions for time dependent damped wave equations. J Math Anal Appl, 2009, 360 (2): 412- 421 |
13 | Nishihara K . Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping. Tokyo J Math, 2011, 34 (2): 327- 343 |
14 | Palmieri A . Global existence of solutions for semilinear wave equation with scaleinvariant damping and mass in exponentially weighted spaces. J Math Anal Appl, 2018, 461 (2): 1215- 1240 |
15 | Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52 (3): 378- 406 |
16 | Strauss W A . Nonlinear scattering theory at low energy. J Funct Anal, 1981, 41 (1): 110- 133 |
17 | Todorova G , Yordanov B . Critical exponent for a nonlinear wave equation with damping. J Differential Equations, 2001, 174 (2): 464- 489 |
18 | Wakasugi Y. Critical Exponent for the Semilinear Wave Equation with Scale Invariant Damping//Ruzhansky M, Turunen V. Fourier Analysis. Boston: Birkhauser, 2014: 375-390 |
19 | Wirth J . Solution representations for a wave equation with weak dissipation. Math Meth Appl Sci, 2004, 27 (1): 101- 124 |
20 | Wirth J . Wave equations with time-dependent dissipation I. Non-effective dissipation. J Differential Equations, 2006, 222 (2): 487- 514 |
21 | Wirth J . Wave equations with time-dependent dissipation Ⅱ. Effective dissipation. J Differential Equations, 2007, 232 (1): 74- 103 |
22 | Wirth J. Asymptotic Properties of Solutions to Wave Equations with Time-Dependent Dissipation[D]. Munich: TU Bergakademie Freiberg, 2005 |
23 | Yagdjian K , Galstian A . Fundamental solutions for the Klein-Gordon equation in de Sitter spacetime. Comm Math Phys, 2009, 285 (1): 293- 344 |
24 | Yordanov B , Zhang Q S . Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231 (2): 361- 374 |
25 | Zhang Q S . A blow-up result for a nonlinear wave equation with damping:the critical case. C R Acad Sci Paris Sér I Math, 2001, 333 (2): 109- 114 |
|