| 1 | Linβ T . Layer-adapted meshes for convection-diffusion problems. Comput Methods Appl Mech Engrg, 2003, 192: 1061- 1105 | | 2 | Zahra W K , Van D M . Discrete spline solution of singularly perturbed problem with two small parameters on a Shishkin-type mesh. Computational Mathematics and Modeling, 2018, 29 (3): 367- 381 | | 3 | Brdar M , Zarin H . A singularly perturbed problem with two parameters on a Bakhvalov-type mesh. Journal of Computational and Applied Mathematics, 2016, 292: 307- 319 | | 4 | Cen Z , Chen J , Xi L . A second-order hybrid finite difference scheme for a system of coupled singularly perturbed initial value problems. Journal of Computational and Applied Mathematics, 2010, 234 (12): 3445- 3457 | | 5 | 周琴, 杨银. 求解二阶双曲型方程的自适应网格方法. 数学物理学报, 2019, 39A (4): 942- 950 | | 5 | Zhou Q , Yang Y . Adaptive mesh method for solving a second-order hyperbolic equation. Acta Math Sci, 2019, 39A (4): 942- 950 | | 6 | Linβ T , Radojev G , Zarin H . Approximation of singularly perturbed reaction-diffusion problems by quadratic-splines. Numerical Algorithms, 2012, 61 (1): 35- 55 | | 7 | Shakti D , Mohapatra J . Layer-adapted meshes for parameterized singular perturbation problem. Procedia Engineering, 2015, 127: 539- 544 | | 8 | Yang J M . Improved uniform convergence of a finite difference approximation to a kind of singularly perturbed problems. Journal of Zhejiang University (Science Edition), 2013, 40 (2): 136- 139 | | 9 | Chen Y P . Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid. Advances in Computational Mathematics, 2006, 24 (1): 197- 212 | | 10 | Zhou Q , Chen Y P , Yang Y . Two improved algorithms and implementation for a singularly perturbed problem on moving meshes. Journal of Systems Science and Complexity, 2011, 24 (6): 1232- 1240 | | 11 | Yin Y , Zhu P , Wang B . Analysis of a streamline-diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed problem. Numerical Mathematics:Theory, Methods and Applications, 2017, 10 (1): 44- 64 | | 12 | Roos H G , Linβ T . Sufficient conditions for uniform convergence on layer-adapted grids. Computing, 1999, 63 (1): 27- 45 | | 13 | 周琴. 一类奇异摄动问题差分格式的一致收敛性分析. 湖南工程学院学报(自然科学版), 2009, 19 (3): 34- 36 | | 13 | Zhou Q . Analysis of uniform convergence for difference scheme of a singularly perturbed problem. Journal of Hunan Institute of Engineering(Natural Science Edition), 2009, 19 (3): 34- 36 | | 14 | 江山, 孙美玲. 多尺度有限元结合Bakhvalov-Shishkin网格法高效处理边界层问题的研究. 浙江大学学报(理学版), 2015, 42 (2): 142- 146 | | 14 | Jiang S , Sun M L . Combining the multiscale finite element and Bakhvalov-Shishkin grid to solve the boundary layer problems. Journal of Zhejiang University(Science Edition), 2015, 42 (2): 142- 146 | | 15 | Storn R , Price K . Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359 | | 16 | 魏文红, 王甲海, 陶铭. 基于泛化反向学习的多目标约束差分进化算法. 计算机研究与发展, 2016, 53 (6): 1410- 1421 | | 16 | Wei W H , Wang J H , Tao M . Multi-objective constrained differential evolution using generalized opposition-based learning. Journal of Computer Research and Development, 2016, 53 (6): 1410- 1421 | | 17 | 朱李楠, 王万良, 沈国江. 基于改进差分进化算法的云制造资源优化组合方法. 计算机集成制造系统, 2017, 1: 203- 214 | | 17 | Zhu L N , Wang W L , Shen G J . Resource optimization combination method based on improved differential evolution algorithm for cloud manufacturing. Computer Integrated Manufacturing Systems, 2017, 1: 203- 214 | | 18 | 刘利斌, 隆广庆, 上官珍萍. 差分进化与有理谱方法求解奇异摄动问题. 计算机工程与应用, 2018, 54 (17): 225- 230 | | 18 | Liu L B , Long G Q , Shangguan Z P . Differential evolution and rational spectral methods for singularly perturbed problems. Computer Engineering and Applications, 2018, 54 (17): 225- 230 |
|