Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (2): 336-344.
Previous Articles Next Articles
Mingyue Xu1(),Caidi Zhao1,*(
),Caraballo Tomás2(
)
Received:
2020-02-26
Online:
2021-04-26
Published:
2021-04-29
Contact:
Caidi Zhao
E-mail:xumingyue19@foxmail.com;zhaocaidi2013@163.com;caraball@us.es
Supported by:
CLC Number:
Mingyue Xu,Caidi Zhao,Caraballo Tomás. Degenerate Regularity of Trajectory Statistical Solutions for the 3D Incompressible Navier-Stokes Equations[J].Acta mathematica scientia,Series A, 2021, 41(2): 336-344.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Bronzi A , Mondaini C , Rosa R . Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems. SIAM J Math Anal, 2014, 46, 1893- 1921
doi: 10.1137/130931631 |
2 |
Bronzi A , Rosa R . On the convergence of statistical solutions of the 3D Navier-Stokes-α model as α vanishes. Discrete Cont Dyn Syst, 2014, 34, 19- 49
doi: 10.3934/dcds.2014.34.19 |
3 |
Bronzi A , Mondaini C , Rosa R . Abstract framework for the theory of statistical solutions. J Differential Equations, 2016, 260, 8428- 8484
doi: 10.1016/j.jde.2016.02.027 |
4 | Caraballo T , Kloeden P , Real J . Invariant measures and statistical solutions of the globally modified Navier-Stokes equations. Discrete Cont Dyn Syst-B, 2008, 10, 761- 781 |
5 | Chepyzhov V, Vishik M. Attractors for Equations of Mathematical Physics. Providence, RI: AMS Colloquium Publications, 2002 |
6 |
Cheskidov A , Kavlie L . Degenerate pullback attractors for the 3D Navier-Stokes equations. J Math Fluid Mech, 2015, 17, 411- 421
doi: 10.1007/s00021-015-0214-9 |
7 |
Chekroun M , Glatt-Holtz N . Invariant measures for dissipative dynamical systems: abstract results and applications. Comm Math Phys, 2012, 316, 723- 761
doi: 10.1007/s00220-012-1515-y |
8 |
Foias C , Prodi G . Sur les solutions statistiques des équations de Naiver-Stokes. Ann Mat Pura Appl, 1976, 111, 307- 330
doi: 10.1007/BF02411822 |
9 | Foias C , Manley O , Rosa R , Temam R . Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 |
10 |
Foias C , Rosa R , Temam R . A note on statistical solutions of the three-dimensional Navier-Stokes equations: the stationary case. C R Math, 2010, 348, 235- 240
doi: 10.1016/j.crma.2009.12.017 |
11 |
Foias C , Rosa R , Temam R . A note on statistical solutions of the three-dimensional Navier-Stokes equations: the time-dependent case. C R Math, 2010, 348, 347- 353
doi: 10.1016/j.crma.2009.12.018 |
12 |
Foias C , Rosa R , Temam R . Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations. Annales de L'Institut Fourier, 2013, 63, 2515- 2573
doi: 10.5802/aif.2836 |
13 |
Foias C , Rosa R , Temam R . Convergence of time averages of weak solutions of the three-dimensional Navier-Stokes equations. J Stat Phys, 2015, 160, 519- 531
doi: 10.1007/s10955-015-1248-3 |
14 |
Foias C , Rosa R , Temam R . Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations. J Dyn Differential Equations, 2019, 31, 1689- 1741
doi: 10.1007/s10884-018-9719-2 |
15 |
Kloeden P , Marín-Rubio P , Real J . Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Comm Pure Appl Anal, 2009, 8, 785- 802
doi: 10.3934/cpaa.2009.8.785 |
16 | Ladyzhenskaya O A . The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach, 1969 |
17 |
Lukaszewicz G . Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete Cont Dyn Syst-B, 2008, 9, 643- 659
doi: 10.3934/dcdsb.2008.9.643 |
18 |
Lukaszewicz G , Robinson J C . Invariant measures for non-autonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, 34, 4211- 4222
doi: 10.3934/dcds.2014.34.4211 |
19 | Rosa R. Theory and Applications of Statistical Solutions of the Navier-Stokes Equations//Robinson J C, Rodrigo J L. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2009: 228-257 |
20 | Rudin W . Real and Complex Analysis. New York: McGraw-Hill Company, 1987 |
21 | Temam R. On the Theory and Numerical Analysis of the Navier-Stokes Equations. Providence, RI: AMS Colloquium Publications, 2001 |
22 | Vishik M , Fursikov A . Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian Math J, 1978, 19, 710- 729 |
23 |
Zhao C , Li Y , Zhou S . Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid. J Differential Equations, 2009, 247, 2331- 2363
doi: 10.1016/j.jde.2009.07.031 |
24 |
Zhao C , Jia X , Yang X . Uniform attractors for non-autonomous incompressible non-Newtonian fluid with a new class of external forces. Acta Math Sci, 2011, 31, 1803- 1812
doi: 10.1016/S0252-9602(11)60362-7 |
25 |
Zhao C , Liu G , Wang W . Smooth pullback attractors for a non-autonomous 2D non-Newtonian fluid and their tempered behaviors. J Math Fluids Mech, 2014, 16, 243- 262
doi: 10.1007/s00021-013-0153-2 |
26 | Zhao C , Kong L , Liu G W . The trajectory attractor and its limiting behavior for the convective Brinkman-Forchheimer equations. Topological Meth in Nonlinear Anal, 2014, 44, 413- 433 |
27 | Zhao C , Li B . Analyticity of the global attractor for the 3D regularized MHD equations. E J Differential Equations, 2016, 179, 1- 20 |
28 |
Zhao C , Caraballo T . Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differential Equations, 2019, 266, 7205- 7229
doi: 10.1016/j.jde.2018.11.032 |
29 |
Zhao C , Li Y , Caraballo T . Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J Differential Equations, 2020, 269, 467- 494
doi: 10.1016/j.jde.2019.12.011 |
30 |
Zhao C , Li Y , Lukaszewicz G . Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z Angew Math Phys, 2020, 71, 1- 24
doi: 10.1007/s00033-019-1224-x |
31 |
Zhao C , Song Z , Caraballo T . Strong trajectory statistical solutions and Liouville type equations for dissipative Euler equations. Appl Math Lett, 2020, 99, 105981
doi: 10.1016/j.aml.2019.07.012 |
32 |
Zhao C , Li Y , Song Z . Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach. Nonlinear Anal-RWA, 2020, 53, 103077
doi: 10.1016/j.nonrwa.2019.103077 |
33 | Zhao C , Li Y , Sang Y . Using trajectory attractor to construct trajectory statistical solutions for 3D incompressible micropolar flows. Z Angew Math Mech, 2020, 100, e201800197 |
34 |
Zhu Z , Zhao C . Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete Cont Dyn Syst, 2018, 38, 1461- 1477
doi: 10.3934/dcds.2018060 |
[1] |
Huang Haiyang;Guo Boling.
The Existence of Weak Solutions and the Trajectory Attractors to the Model of Climate Dynamics [J]. Acta mathematica scientia,Series A, 2007, 27(6): 1098-1110. |
|