| 1 | Oskolkov A P . The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap Nauchn Semin LOMI, 1973, 38, 98- 136 | | 2 | Cao Y , Lunasin E M , Titi E S . Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models. Commun Math Sci, 2006, 4 (4): 823- 848 | | 3 | Kalantarov V K , Titi E S . Global attractors and determining modes for the 3D Navier-Stokes-Voigt equations. Chin Ann Math Ser B, 2009, 30 (6): 697- 714 | | 4 | Kalantarov V K , Levant B , Titi E S . Gevrey regularity of the global attractor of the 3d Navier-Stokes-Voigt equations. J Nonlinear Sci, 2009, 19 (2): 133- 152 | | 5 | Yue G C , Zhong C K . Attractors for autonomous and nonautonomous 3d Navier-Stokes-Voigt equations. Discrete Contin Dyn Syst Ser B, 2011, 16 (3): 985- 1002 | | 6 | Dou Y W , Yang X G , Qin Y M . Remarks on uniform attractors for the 3d nonautonomous Navier-Stokes-Voigt equations. Bound Value Probl, 2011, 2011 (1): 49 | | 7 | García-luengo J , Marín-Rubio P , Real J . Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations. Nonlinearity, 2012, 25 (4): 905- 930 | | 8 | Zelati M C , Gal C G . Singular limits of Voigt models in fluid dynamics. J Math Fluid Mech, 2015, 17 (2): 233- 259 | | 9 | Yang X G , Li L , Lu Y J . Regularity of uniform attractor for 3d non-autonomous Navier-Stokes-Voigt equation. Appl Math Comput, 2018, 334, 11- 29 | | 10 | Niche C J . Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum. J Differential Equations, 2016, 260 (8): 4440- 4453 | | 11 | Anh C T , Trang P T . Decay rate of solutions to 3d Navier Stokes Voigt equations in $H^m$ spaces. Appl Math Lett, 2016, 61, 1- 7 | | 12 | Qin Y , Yang X , Liu X . Averaging of a 3d Navier Stokes Voigt equation with singularly oscillating forces. Nonlinear Anal RWA, 2012, 13 (2): 893- 904 | | 13 | Anh C T , Trang P T . On the regularity and convergence of solutions to the 3d Navier Stokes Voigt equations. Comput Math Appl, 2017, 73 (4): 601- 615 | | 14 | Celebi A O , Kalantarov V K , Polat M . Global attractors for 2d Navier Stokes Voigt equations in an unbounded domain. Appl Anal, 2009, 88 (3): 381- 392 | | 15 | Anh C T , Trang P T . Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2013, 143 (2): 223- 251 | | 16 | Cai X J , Jiu Q S . Weak and strong solutions for the incompressible Navier-Stokes equations with damping. J Math Anal Appl, 2008, 343 (2): 799- 809 | | 17 | Zhang Z J , Wu X L , Lu M . On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping. J Math Anal Appl, 2011, 377 (1): 414- 419 | | 18 | Zhou Y . Regularity and uniqueness for the 3d incompressible Navier Stokes equations with damping. Appl Math Lett, 2012, 25 (11): 1822- 1825 | | 19 | Jia Y , Zhang X W , Dong B Q . The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping. Nonlinear Anal RWA, 2011, 12 (3): 1736- 1747 | | 20 | Jiang Z H , Zhu M X . The large time behavior of solutions to 3d Navier-Stokes equations with nonlinear damping. Math Methods Appl Sci, 2012, 35 (1): 97- 102 | | 21 | Song X L , Hou Y R . Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete Contin Dyn Syst, 2011, 31 (1): 239- 252 | | 22 | Song X L , Hou Y R . Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping. J Math Anal Appl, 2015, 422 (1): 337- 351 | | 23 | Song X L, Liang F, Wu J H. Pullback ${\cal D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping. Bound Value Probl, 2016, Article number: 145 | | 24 | Pardo D , José V , ángel G . Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete Contin Dyn Syst, 2019, 24 (8): 3569- 3590 | | 25 | Li F , You B . Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete Contin Dyn Syst, 2020, 25 (1): 55- 80 | | 26 | Liu H , Lin L , Sun C F , Xiao Q K . The exponential behavior and stabilizability of the stochastic 3d Navier-Stokes equations with damping. Reviews in Mathematical Physics, 2019, 31 (7): 1950023 | | 27 | Di Plinio F , Giorgini A , Pata V , Temam R . Navier-Stokes-Voigt equations with memory in 3d lacking instantaneous kinematic viscosity. J Nonlinear Sci, 2018, 28, 653- 686 | | 28 | Wang X Q , Qin Y M . Three-dimensional Navier-Stokes-Voigt equation with a memory and the Brinkman-Forchheimer damping term. Math Methods Appl Sci, 2019, | | 29 | Lv W B , Lu L Q , Wu S H . Decay characterization of the solutions to the Navier-Stokes-Voigt equations with damping. J Math Phys, 2020, 61, 081508 | | 30 | Rosa R . The global attractor for the 2d Navier-Stokes flow on some unbounded domains. Nonlinear Anal, 2001, 32 (1): 71- 85 | | 31 | Marín-Rubio P , Real J . On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems. Nonlinear Anal, 2009, 71 (9): 3956- 3963 | | 32 | García-Luengo J , Marín-Rubio P , Real J . Pullback attractors in V for non-autonomous 2d-Navier-Stokes equations and their tempered behaviour. J Differential Equations, 2012, 252 (8): 4333- 4356 | | 33 | Lions J L. Quelques Méthodes de Résolution des Problémes aux Limites Nonlineaires. Paris: Dunod, 1969 |
|