| 1 | Bejenaru I , Ionescu A D , Kenig C E , et al. Global Schr?dinger maps in dimensions d ≥ 2:small data in the critical Sobolev spaces. Ann Math, 2011, 173 (2/3): 1443- 1506 | | 2 | Cazenave T . An Introduction to Nonlinear Schr?dinger Equations. Rio de Janeiro: Instituto de Matemática Universidade Federal do Rio de Janeiro, 1996, | | 3 | Chang N H , Shatah J , Uhlenbeck K . Schr?dinger maps. Comm Pure Appl Math, 2000, 53 (5): 590- 602 | | 4 | Ding Q . Explicit blow-up solutions to the Schr?dinger maps from R2 to the hyperbolic 2-space ${\cal H}.2$. J Math Phys, 2009, 50 (10): 103507 | | 5 | Ding W Y , Wang Y D . Local Schr?dinger flow into K?hler manifolds. Sci China, 2001, 44, 1446- 1464 | | 6 | Ding S J , Wang C Y . Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int Math Res Not, 2007, | | 7 | Guo B L , Huang H Y . Smooth solution of the generalized system of ferro-magnetic chain. Discrete Contin Dyn Syst, 1999, 5, 729- 740 | | 8 | Ionescu A D , Kenig C E . Low-regularity Schr?dinger maps, Ⅱ: global well-posedness in dimensions d ≥ 3. Commun Math Phys, 2007, 271, 523- 559 | | 9 | Liu X G . Concentration sets of the Landau-Lifshitz system and quasi-mean curvature flows. Calc Var Partial Differential Equations, 2006, 27 (4): 493- 525 | | 10 | Landau L D , Lifshitz E M . On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion, 1935, 8 | | 11 | Lin J Y , Lai B S , Wang C Y . Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces. Calc Var Partial Differential Equations, 2015, 54 (1): 665- 692 | | 12 | Li Z X , Shen Y T . Nonsmooth critical point theorems and its applications to quasilinear Schr?dinger equations. Acta Math Sci, 2016, 36B (1): 73- 86 | | 13 | Li Q Q , Wu X . Existence of nontrivial solutions for generalized quasilinear Schr?dinger equations with critical or supercritical growths. Acta Math Sci, 2017, 37B (6): 1870- 1880 | | 14 | Merle F , Rapha?l P , Radnianski I . Blow up dynamics for smooth data equivariant solutions to the critical Schr?dinger map problem. Invent Math, 2013, 193 (2): 249- 365 | | 15 | Wang B X . Globally well and ill posedness for non-elliptic derivative Schr?dinger equations with small rough data. J Funct Anal, 2013, 265 (12): 3009- 3052 | | 16 | Yang G S , Guo B L . Some exact solutions to multidimensional Landau-Lifshitz equation with uprush external field and anisotropy field. Nonlinear Anal, 2009, 71 (9): 3999- 4006 | | 17 | Zhong P H , Wang S , Zeng M . Some exact blowup solutions to multidimensional Schr?dinger map equation on hyperbolic space and cone. Mod Phys Lett A, 2013, 28 (10): 1350043 | | 18 | 钟澎洪, 杨干山, 马璇. 双曲空间上的Landau-Lifshitz-Gilbert方程解的全局存在性与自相似爆破解. 数学物理学报, 2019, 39A (3): 461- 474 | | 18 | Zhong P H , Yang G S , Ma X . Global existence and self-similar blowup of Landau-Lifshitz-Gilbert equation on hyperbolic space. Acta Math Sci, 2019, 39A (3): 461- 474 |
|