| 1 | Bahouri H , Chemin J Y , Danchin R . Fourier Analysis and Nonlinear Partial Differential Equations. New York: Springer, 2011 | | 2 | Bird R B , Curtiss C F , Armstrong R C , Hassager O . Dynamics of Polymeric Liquids. New York: Wiley, 1987 | | 3 | Chemin J Y , Masmoudi N . About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J Math Anal, 2006, 33 (1): 84- 112 | | 4 | Chen Q, Hao X. Global well-posedness in the critical Besov spaces for the incompressible Oldroyd-B model without damping mechanism. Journal of Mathematical Fluid Mechanics, 2019, 21, Article number: 42 | | 5 | Chen Q , Miao C . Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal, 2008, 68 (7): 1928- 1939 | | 6 | Constantin P , Kliegl M . Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch Ration Mech Anal, 2012, 206 (3): 725- 740 | | 7 | Elgindi T M , Liu J . Global wellposedness to the generalized Oldroyd type models in $\mathbb{S}.3$. J Differential Equations, 2015, 259, 1958- 1966 | | 8 | Elgindi T M , Rousset F . Global regularity for some Oldroyd-B type models. Comm Pure Appl Math, 2015, 68 (11): 2005- 2021 | | 9 | Fang D , Zi R . Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J Math Anal, 2016, 48 (2): 1054- 1084 | | 10 | Guillopé C , Saut J C . Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal, 1990, 15 (9): 849- 869 | | 11 | Guillopé C , Saut J C . Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél Math Anal Numér, 1990, 24 (3): 369- 401 | | 12 | Guo Y , Wang Y . Decay of dissipative equations and negative Sobolev spaces. Comm Partial Differential Equations, 2012, 37 (12): 2165- 2208 | | 13 | Lei Z , Masmoudi N , Zhou Y . Remarks on the blowup criteria for Oldroyd models. J Differential Equations, 2010, 248 (2): 328- 341 | | 14 | Lin F . Some analytical issues for elastic complex fluids. Comm Pure Appl Math, 2012, 65 (7): 893- 919 | | 15 | Lions P L , Masmoudi N . Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann Math Ser B, 2000, 21 (2): 131- 146 | | 16 | Oldroyd J . Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc Roy Soc Edinburgh Sect A, 1958, 245 (1241): 278- 297 | | 17 | Xin Z, Xu J. Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions. 2018, ArXiv: 1812.11714v1 | | 18 | Zhai X. Global solutions to the n-dimensional incompressible Oldroyd-B model without damping mechanism. 2018, ArXiv: 1810.08048 | | 19 | Zhu Y . Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J Funct Anal, 2018, 274 (7): 2039- 2060 | | 20 | Zi R , Fang D , Zhang T . Global solution to the incompressible Oldroyd-B model in the critical Lp framework: the case of the non-small coupling parameter. Arch Rational Mech Anal, 2014, 213 (2): 651- 687 |
|