Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (4): 997-1012.
Previous Articles Next Articles
Jinguo Zhang*(),Dengyun Yang(
)
Received:
2020-05-13
Online:
2021-08-26
Published:
2021-08-09
Contact:
Jinguo Zhang
E-mail:jgzhang@jxnu.edu.cn;yangdengyun@139.com
Supported by:
CLC Number:
Jinguo Zhang,Dengyun Yang. Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents[J].Acta mathematica scientia,Series A, 2021, 41(4): 997-1012.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Garofalo N . Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J Differ Equa, 1993, 104, 117- 146
doi: 10.1006/jdeq.1993.1065 |
2 | D'Ambrosio L . Hardy inequalities related to Grushin-type operators. Proc Am Math Soc, 2004, 132 (3): 725- 734 |
3 |
Kogoj A E , Sonner S . Hardy type inequalities for Δλ-Laplacians. Complex Var Elliptic Equa, 2016, 61 (3): 422- 442
doi: 10.1080/17476933.2015.1088530 |
4 |
Yang Q , Su D , Kong Y . Improved Hardy inequalities for Grushin operators. J Math Anal Appl, 2015, 424, 321- 343
doi: 10.1016/j.jmaa.2014.11.010 |
5 |
Cao D , Han P . Solutions to critical elliptic equations with multi-singular inverse square potentials. J Differ Equa, 2006, 224, 332- 372
doi: 10.1016/j.jde.2005.07.010 |
6 |
Cao D , Peng S . A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differl Equ, 2003, 193, 424- 434
doi: 10.1016/S0022-0396(03)00118-9 |
7 |
Jannelli E . The role played by space dimension in elliptic critical problems. J Differl Equ, 1999, 156, 407- 426
doi: 10.1006/jdeq.1998.3589 |
8 |
Ghoussoub N , Yuan C . Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans Amer Math Soc, 2000, 352, 5703- 5743
doi: 10.1090/S0002-9947-00-02560-5 |
9 |
Felli V , Terracini S . Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Comm Partial Differ Equ, 2006, 31, 469- 495
doi: 10.1080/03605300500394439 |
10 |
Kang D . On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms. Nonlinear Anal, 2008, 68, 1973- 1985
doi: 10.1016/j.na.2007.01.024 |
11 |
Kang D . Positive minimizers of the best constants and solutions to coupled critical quasilinear systems. J Differ Equa, 2016, 260, 133- 148
doi: 10.1016/j.jde.2015.08.042 |
12 |
Ghoussoub N , Robert F , Shakerian S , Zhao M . Mass and asymptotics associated to fractional Hardy-Schrödinger operators in critical regimes. Comm Partial Differ Equa, 2018, 43 (6): 859- 892
doi: 10.1080/03605302.2018.1476528 |
13 | Zhang J , Hsu T-S . Nonlocal elliptic systems involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Taiwanese J of Math, 2019, 23 (6): 1479- 1510 |
14 |
Zhang J , Hsu T-S . Multiplicity of positive solutions for a nonlocal elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Acta Math Sci, 2020, 40B (3): 679- 699
doi: 10.1007/s10473-020-0307-2 |
15 |
Zhang J , Hsu T-S . Existence results for a fractional elliptic system with critical Sobolev-hardy exponents and concave-convex nonlinearities. Math Methods in the Applied Sci, 2020, 43 (6): 3488- 3512
doi: 10.1002/mma.6134 |
16 |
Zhang J , Hsu T-S . Multiple solutions for a fractional Laplacian system involving critical Sobolev-Hardy exponents and homogeneous term. Mathematical Modelling and Anal, 2020, 25 (1): 1- 20
doi: 10.3846/mma.2020.7704 |
17 |
Ekeland I . On the variational principle. J Math Anal Appl, 1974, 47, 324- 353
doi: 10.1016/0022-247X(74)90025-0 |
18 | Willem M . Minimax Theorems. Boston: Birkhauser, 1996 |
19 |
Mont R . Sobolev inequalities for weighted gradients. Comm Partial Differ Equ, 2006, 31, 1479- 1504
doi: 10.1080/03605300500361594 |
20 | Loiudice A. Local behavior of solutions to sub-elliptic problems with Hardy potential on Carnot groups. Mediterr J Math, 2018, 15, Article number: 81 |
21 |
Dou J , Niu P . Hardy-Sobolev type inequalities for generalized Baouendi-Grushin operators. Miskolc Math Notes, 2007, 8 (1): 73- 77
doi: 10.18514/MMN.2007.142 |
22 | Monti R , Morbidelli D . Kelvin transform for Grushin operators and critical semilinear equations. Duke Math J, 2006, 131, 167- 202 |
23 | Zhang J , Yang D . Asymptotic properties of solution to Grushin type operator problems with multi-singular potentials. J of Math (PRC), 2021, 41 (1): 79- 87 |
24 | Zhang J, Yang D. Critical Hardy-Sobolev exponents problem with Grushin operator and Hardy-type singularity terms. Acta Applicandae Math, 2021, 172, Article number: 4. https://doi.org/10.1007/s10440-021-00399-1 |
[1] | Duan Yu, Sun Xin. Existence and Multiplicity of Solutions to a Class of Klein-Gordon-Maxwell Systems [J]. Acta mathematica scientia,Series A, 2025, 45(3): 756-766. |
[2] | Meng Xiaoying,Lu Lu. Existence and Asymptotic Behavior of Solutions for Kirchhoff Equations Involving the Fractional $ p$-Laplacian [J]. Acta mathematica scientia,Series A, 2025, 45(2): 434-449. |
[3] | Jin Zhenfeng, Sun Hongrui, Zhang Weimin. Multiplicity and Asymptotic Behavior of Normalized Solutions for Kirchhoff-Type Equation [J]. Acta mathematica scientia,Series A, 2024, 44(4): 871-884. |
[4] | Liao Yuankang. Nonlinear Stability of Viscous Shock Waves for One-dimensional Isentropic Compressible Navier-Stokes Equations with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1149-1169. |
[5] | An Yanning, Liu Wenjun, Kong Aowen. Stability of Piezoelectric Beams with Magnetic Effects of Fractional Derivative Type and with/without Thermal Effects [J]. Acta mathematica scientia,Series A, 2023, 43(2): 355-376. |
[6] | Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380. |
[7] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[8] | Tianling Gao,Li Xia,Mingjun Zhou,Yuanyuan Zhang. The Asymptotic Behavior of Total Variation Flow with the Non-Constant Data [J]. Acta mathematica scientia,Series A, 2022, 42(1): 157-164. |
[9] | Lihong Zhang,Zedong Yang,Guotao Wang,Dumitru Baleanu. Existence and Asymptotic Behavior of Solutions of a Class of k-Hessian Equation [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1357-1371. |
[10] | Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114. |
[11] | Changqing Tong,Jing Zheng. Periodic Solutions of a Semi-Linear Klein-Gordon Equations with High Frequencies [J]. Acta mathematica scientia,Series A, 2019, 39(3): 484-500. |
[12] | Zhang Mingshu, Zhu Zheqi, Zhao Caidi. Determining Modes and Determining Nodes to the Fluid Flow of Ladyzhenskaya Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 71-82. |
[13] | Wang Shenghua, Cheng Guofei. The Asymptotic Behavior of the Solution in Structured Bacterial Population Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 156-167. |
[14] | Meng Xiaoying. Analysis of a Stochastic Delayed Epidemic Model with a Non-Monotonic Incidence Rate [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1162-1175. |
[15] | Ba Na, Tian Fanji, Zheng Lie. C2+α Local Solvability of the k-Hessian Equations [J]. Acta mathematica scientia,Series A, 2017, 37(3): 499-509. |
|