Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (4): 1066-1078.
Previous Articles Next Articles
Received:
2019-12-30
Online:
2021-08-26
Published:
2021-08-09
Supported by:
CLC Number:
Yajun Xie. A Class of Efficient Modified Algorithms Based onHalley-Newton Methods[J].Acta mathematica scientia,Series A, 2021, 41(4): 1066-1078.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
方法 | MHN1 | MHN2 | NM | Halley | |
参数 | α= 2, β = 2, γ = 2 | β = 2, γ = 2 | |||
初值 | It | 6 | 6 | 7 | 10 |
(2, -0.5)T | CPU | 0.013431 | 0.011241 | 0.013870 | 0.013895 |
Val | 2.516e-010 | 2.516e-010 | 1.0195e-009 | 1.7879e-007 | |
It | 34 | 20 | 32 | 26 | |
(500, 50)T | CPU | 0.017173 | 0.012883 | 0.015482 | 0.014889 |
Val | 3.4362e-011 | 5.0377e-011 | 3.3054e-010 | 5.1109e-007 | |
It | 26 | 26 | - | 24 | |
(100, 100)T | CPU | 0.01655 | 0.014466 | - | 0.013880 |
Val | 1.9425e-010 | 1.9425e-010 | - | 5.3603e-007 |
"
方法 | MHN1 | MHN2 | NM | Halley | |
参数 | α= 2, β = 2, γ = 1.8 | β = 2, γ = 1.8 | |||
初值 | It | 15 | 11 | - | 14 |
(2, 1, 1)T | CPU | 0.019879 | 0.020301 | - | 0.023726 |
Val | 1.2505e-007 | 2.9591e-007 | - | 3.4397e-007 | |
It | 15 | 14 | - | 22 | |
(1, 0, 1)T | CPU | 0.019571 | 0.019100 | - | 0.019471 |
Val | 9.4170e-007 | 5.3605e-007 | - | 6.9823e-007 | |
It | 11 | 11 | - | 18 | |
(10, 10, 10)T | CPU | 0.020074 | 0.018517 | - | 0.021271 |
Val | 9.4538e-007 | 5.5233e-007 | - | 1.6925e-007 |
"
MHN1 | MHN2 | NM | Halley | ||
It | 23 | 21 | - | 59 | |
E4 | CPU | 0.012871 | 0.024354 | - | 0.026726 |
Val | 3.9611e-007 | 2.6462e-007 | - | 5.1715e-007 | |
It | 10 | 14 | 26 | 22 | |
E5 | CPU | 0.011445 | 0.010914 | 0.011730 | 0.011648 |
Val | 1.1887e-007 | 6.0749e-007 | 2.0876 | 6.7433e-007 | |
It | 33 | 11 | 100 | 100 | |
E6 | CPU | 0.014556 | 0.023012 | 0.018521 | 0.018835 |
Val | 2.7697e-007 | 2.7240e-007 | 2.7136-007 | 1.522e-007 | |
It | 46 | 45 | 60 | 58 | |
E7 | CPU | 0.01534 | 0.02774 | 0.01554 | 0.015613 |
Val | 3.9978e-007 | 2.6487e-007 | 1.8625-007 | 5.2191e-007 | |
It | 12 | 9 | - | 23 | |
E8 | CPU | 0.01500 | 0.01189 | - | 0.015119 |
Val | 1.9616e-007 | 7.2264e-007 | - | 4.2569e-007 | |
It | 10 | 9 | - | - | |
E9 | CPU | 0.021609 | 0.027686 | - | - |
Val | 7.7727e-007 | 6.6277e-007 | - | - |
1 | Andrei N . An unconstrained optimization test functions collection. Adv Model Optim, 2008, 10, 147- 161 |
2 |
An H B , Bai Z Z . A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations. Appl Numer Math, 2007, 57, 235- 252
doi: 10.1016/j.apnum.2006.02.007 |
3 |
Bai Z Z . Block and asynchronous two-stage methods for mildly nonlinear systems. Numer Math, 1999, 82, 1- 20
doi: 10.1007/s002110050409 |
4 | Burden R L , Faires J D . Numerical Analysis (Seventh Edition). Boston: Thomson Learning Inc, 2001, 600- 635 |
5 | Schnabel R B . Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Philadelphia: SIAM, 1996 |
6 | Kelley C T . Solving Nonlinear Equations with Newton's Method. Philadelphia: SIAM, 2003 |
7 | Kelley C T . Iterative Methods for Linear and Nonlinear Equations. North Carolina: North Carolina State University, 1995 |
8 | Levin Y , Ben-Israelb A . Directional Halley and quasi-Halley methods in n variables. Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, 2001, 8, 345- 367 |
9 | Narang M , Bhatia S , Kanwar V . New two-parameter Chebyshev-Halley-like family of fourth and sixthorder methods for systems of nonlinear equations. Appl Math Comput, 2016, 275, 394- 403 |
10 |
Nedzhibov G H . A family of multi-pointiterative methods for solving systems of nonlinear equations. J Comput Appl Math, 2008, 222, 244- 250
doi: 10.1016/j.cam.2007.10.054 |
11 | Noor M A . New classes of iterative methods for nonlinear equations. Appl Math Comput, 2007, 191, 128- 131 |
12 |
Noor M A , Shah F A . A family of iterative schemes for finding zeros of nonlinear equations having unknowm multiplicity. Appl Math Inf Sci, 2014, 8, 2367- 2373
doi: 10.12785/amis/080532 |
13 |
More J J , Grabow B S , Hillstrom K E . Testing unconstrained optimization software. ACM Trans Math Software, 1981, 7, 17- 41
doi: 10.1145/355934.355936 |
14 | Shah F A , Noor M A . Higher order iterative schemes for nonlinear equations using decomposition technique. Appl Math Comput, 2015, 266, 414- 423 |
15 | Sun Z , Zhang K . Solving nonlinear systems of equations based on social cognitive optimization. Comput Eng Appl, 2008, 44, 42- 46 |
16 | Traub J F . Iterative Methods for the Solution of Equations. Englewood: Prentice Hall, 1964 |
17 | Woodbury M A. Inverting modified matrices[R]. Princeton NJ: Statistical Research Group, 1950 |
18 | Xiao X , Yin H . A new class of methods with higher order of convergence for solving systems of nonlinear equations. Appl Math Comput, 2015, 264, 300- 309 |
19 |
Yang X J , Gao F . New technology for solving diffusion and heat equations. Thermal Science, 2017, 21, 133- 140
doi: 10.2298/TSCI160411246Y |
20 |
Yang X J . A new integral transform with an application in heat-transfer problem. Thermal Science, 2016, 20, 677- 681
doi: 10.2298/TSCI16S3677Y |
21 | Gao F , Yang X J , Zhang Y F . Exact traveling wave solutions for a new nonlinear heat-transfer equation. Thermal Science, 2016, 21, 1833- 1838 |
[1] | Yu Dongmei, Liu Dayi. The Levenberg-Marquardt Algorithm for Solving the Generalized Complementarity Problems [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1311-1326. |
[2] | Ma Changfeng, Xie Yajun, Bu Fan. The Tensor Scheme BCGSTAB Algorithm for Solving Stein Tensor Equations [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1652-1664. |
[3] | Yu Yikang,Niu Jing. A Kind of Numerical Algorithm for Elliptic Interface Problem [J]. Acta mathematica scientia,Series A, 2023, 43(3): 883-895. |
[4] | Zhihao Ge,Ruihua Li. Numerical Methods for the Critical Temperature and Gap Solution of Bogoliubov-Tolmachev-Shirkov Model [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1699-1711. |
[5] | Lixin Feng,Xiaoxu Yang. Spectral Regularization Method for Volterra Integral Equation of the First Kind with Noise Data [J]. Acta mathematica scientia,Series A, 2020, 40(3): 650-661. |
|