| 1 | Aharonov Y , Davidovich L , Zagury N . Quantum random walks. Physical Review A, 1993, 48 (2): 1687- 1690 | | 2 | Shenvi N , Kempe J , Whaley K B . Quantum random-walk search algorithm. Physical Review A, 2003, 67 (5): 052307 | | 3 | Ambainis A . Quantum walk algorithm for element distinctness. SIAM Journal on Computing, 2007, 37 (1): 210- 239 | | 4 | Farhi E , Gutmann S . Quantum computation and decision trees. Physical Review A, 1998, 58 (2): 915- 928 | | 5 | Watrous J . Quantum simulations of classical random walks and undirected graph connectivity. Journal of Computer System Sciences, 2001, 62 (2): 376- 391 | | 6 | Andraca V, Elías S. Quantum Walks for Computer Scientists. USA, Vermont: Morgan & Claypool, 2008 | | 7 | Venegasandraca S E . Quantum walks: a comprehensive review. Quantum Information Processing, 2012, 11 (5): 1015- 1106 | | 8 | Higuchi Y , Konno N , Sato I , et al. Periodicity of the discrete-time quantum walk on a finite graph. Interdisciplinary Information Sciences, 2017, 23, 75- 86 | | 9 | Krovi H , Brun T A . Hitting time for quantum walks on the hypercube. Physical Review A, 2006, 73 (3): 501- 507 | | 10 | Konno N , Namiki T , Soshi T . Symmetry of distribution for the one-dimensional hadamard walk. Interdisciplinary Information Sciences, 2002, 10 (1): 11- 22 | | 11 | Konno N . A new type of limit theorems for the one-dimensional quantum random walk. Journal of The Mathematical Society of Japan, 2005, 57 (4): 1179- 1195 | | 12 | 韩琦, 陈芷禾, 殷世德, 等. 基于hadamard算子的二维离散量子行走的概率测度估计. 应用数学学报, 2020, 43 (1): 49- 61 | | 12 | Han Q , Chen Z H , Yin S D , et al. Estimation of probability measure for 2-D discrete quantum walk based on hadamard operator. Acta Mathematicae Applicatae Sinica, 2020, 43 (1): 49- 61 | | 13 | Linden N , Sharam J . Inhomogeneous quantum walks. Physical Review A, 2009, 80 (5): 052327 | | 14 | Shikano Y , Katsura H . Localization and fractality in inhomogeneous quantum walks with self-duality. Physical Review E, 2010, 82 (3): 031122 | | 15 | Rousseva J , Kovchegov Y . On alternating quantum walks. Physica A: Statistical Mechanics and its Applications, 2017, 470, 309- 320 | | 16 | Konno N , Luczak T , Segawa E , et al. Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Information Processing, 2013, 12 (1): 33- 53 | | 17 | 韩琦, 郭婷, 殷世德, 陈芷禾. 直线上空间非齐次三态量子游荡的平稳测度. 数学物理学报, 2019, 39 (1): 135- 144 | | 17 | Han Q , Guo T , Yin S D , Chen Z H . The stationary measure of a space-inhomogeneous three-state quantum walk on the line. Acta Math Sci, 2019, 39 (1): 135- 144 | | 18 | Machida T . Limit distribution for a time-inhomogeneous 2-state quantum walk. Journal of Computational and Theoretical Nanoscience, 2013, 10 (7): 1571- 1578 | | 19 | Konno N . A note on It?'s formula for discrete-time quantum walk. Journal of Computational and Theoretical Nanoscience, 2013, 10 (7): 1579- 1582 | | 20 | Kang Y , Wang C . It? formula for one-dimensional continuous-time quantum random walk. Physica A: Statistical Mechanics and its Applications, 2014, 414, 154- 162 | | 21 | 康元宝. 多维连续时间量子随机游动的It?公式. 数学物理学报, 2016, 36A (4): 771- 782 | | 21 | Kang Y B . It?'s formula for multidimensional continuous-time quantum random walk. Acta Math Sci, 2016, 36A (4): 771- 782 |
|