| 1 | Fabrie P , Gallou?t T . Modelling wells in porous media flows. Math Models Methods Appl Sci, 2000, 10, 673- 709 | | 2 | Rakotoson J M . Existence of bounded of some degenerate quasilinear elliptic equations. Comm Partial Differential Equations, 1987, 12 (6): 633- 676 | | 3 | Giachetti D , Maroscia G . Existence results for a class of porous medium type equations with a quadratic gradient term. J Evol Equ, 2008, 8, 155- 188 | | 4 | Fang Z , Li G . Extinction and decay estimates of solutions for a class of doubly degenerate equations. Applied Mathematics Letters, 2012, 25 (11): 1795- 1802 | | 5 | Vázquez J L . The Porous Medium Equation. Mathematical Theory. Oxford: Oxford Univ Press, 2007 | | 6 | Li F Q . Some nonlinear elliptic systems with right-hand side integrable data with respect to the distance to the boundary. Science China Mathematics, 2014, 57 (9): 1891- 1910 | | 7 | Yin J X , Wang L W , Huang R . Complexity of asymptotic behavior of solutions for the porous medium equation with absorption. Acta Mathematica Scientia, 2010, 30B (6): 1865- 1880 | | 8 | Wu X L , Gao W J . Blow-up of the Solution for a class of porous medium equation with positive initial energy. Acta Math Sci, 2013, 33B (4): 1024- 1030 | | 9 | Liu D M , Mu C L , Xin Q . Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32B (3): 1206- 1212 | | 10 | Li F C , Xie C H . Global existence and blow-up for a nonlinear porous medium equation. Appl Math Lett, 2003, 16, 185- 192 | | 11 | Wang J , Wang Z J , Yin J X . A class of degenerate diffusion equations with mixed boundary conditions. J Math Anal Appl, 2004, 298 (2): 589- 603 | | 12 | Boccardo L , Segura de León S , Trombettic C . Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. J Math Pures Appl, 2001, 80 (9): 919- 940 | | 13 | Dall'Aglio A , Giachetti D , Leone C , León S . Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term. Ann Inst H Poincaré Anal Nonlinéaire, 2006, 23, 97- 126 | | 14 | Ferone V , Posteraro M R , Rakotoson J M . $ L.\infty $-estimates for nonlinear elliptic problems with $ p $-growth in the gradient. J Inequal Appl, 1999, 3 (2): 109- 125 | | 15 | Arcoya D , Boccardo L . Regularizing effect of the interplay between coefficients in some elliptic equations. J Funct Anal, 2015, 268 (5): 1153- 1166 | | 16 | Arcoya D , Boccardo L . Regularizing effect of $ L.q $ interplay between coefficients in some elliptic equations. J Math Pures Appl, 2018, 111, 106- 125 | | 17 | Li Z Q . Existence result to a parabolic equation with quadratic gradient term and an $ L.1 $ source. Acta Applicandae Mathematicae, 2019, 163 (1): 145- 156 | | 18 | Moreno M L . A quasilinear Dirichlet problem with quadratic growth respect to the gradient and $ L.{1} $ data. Nonlinear Anal, 2014, 95, 450- 459 | | 19 | Alvino A , Boccardo L , Ferone V , et al. Existence results for nonlinear elliptic equations with degenerate coercivity. Ann Mat Pura Appl, 2003, 182 (4): 53- 79 | | 20 | Zheng J , Tavares L S . The obstacle problem for nonlinear noncoercive elliptic equations with $ L.1 $-data. Journal of Inequalities and Applications, 2019, 205, 1- 15 | | 21 | Chlebicka I. Regularizing effect of the lower-order terms in elliptic problems with Orlicz growth. 2019, arXiv: 1902.05314 | | 22 | 李仲庆, 高文杰. 一类具低阶项和退化强制的椭圆方程的有界弱解. 数学物理学报, 2019, 39A (3): 529- 534 | | 22 | Li Z Q , Gao W J . Bounded weak solutions to an elliptic equation with lower order terms and degenerate coercivity. Acta Math Sci, 2019, 39A (3): 529- 534 | | 23 | Lions J L . Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires. Paris: Dunod Gauthier-Villars, 1969 | | 24 | Boccardo L , Murat F , Puel J P . Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann Mat Pura Appl, 1988, 152 (4): 183- 196 |
|