| 1 | Alazard T . Incompressible limit of the nonisentropic euler equations with the solid wall boundary conditions. Adv Differential Equations, 2005, 10, 19- 44 | | 2 | Alazard T . Low Mach number limit of the full Navier-Stokes equations. Arch Ration Mech Anal, 2006, 180, 1- 73 | | 3 | Atkinson F , Peletier L . Similarity solutions of the nonlinear diffusion equation. Arch Ration Mech Anal, 1974, 54, 373- 392 | | 4 | Chen M , Xu X , Zhang J . The zero limits of angular and micro-rotational viscosities for the two-dimensional micropolar fluid equations with boundary effect. Z Angew Math Phys, 2014, 65 (2): 687- 710 | | 5 | Danchin R . Low Mach number limit for viscous compressible flows. ESAIM Math Model Numer Anal, 2005, 39, 459- 475 | | 6 | Dou C , Jiang S , Ou Y . Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain. J Differential Equations, 2015, 258, 379- 398 | | 7 | Duan R . Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity. J Math Anal Appl, 2018, 463, 417- 495 | | 8 | Eringen C A . Linear theory of micropolar elasticity. J Math Mech, 1966, 15, 909- 923 | | 9 | Eringen C A . Theory of micropolar fluids. J Math Mech, 1966, 16, 1- 16 | | 10 | Feireisl E , Novotny A . Singular Limits in Thermodynamics of Viscous Fluids. Basel: Birkh?user, 2009 | | 11 | Fan J , Gao H , Guo B . Low Mach number limit of the compressible magnetohydrodynamic equations with zero thermal conductivity coefficient. Math Methods Appl Sci, 2011, 34, 2181- 2188 | | 12 | Hu X , Wang D . Low Mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J Math Anal, 2009, 41, 1272- 1294 | | 13 | Huang F , Wang T , Wang Y . Diffusive wave in the low Mach limit for compressible Navier-Stokes equations. Adv Math, 2017, 319, 348- 395 | | 14 | Jiang S , Ju Q , Li F . Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients. SIAM J Math Anal, 2010, 42, 2539- 2553 | | 15 | Jiang S , Ou Y . Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains. J Math Pures Appl, 2011, 96, 1- 28 | | 16 | Jiang S , Ju Q , Li F . Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations. Nonlinearity, 2012, 15, 1351- 1365 | | 17 | Jiang S , Ju Q , Li F . Incompressible limit of the non-isentropic ideal magnetohydrodynamic equations. SIAM J Math Anal, 2016, 48 (1): 302- 319 | | 18 | Jiang S , Ju Q , Li F , Xin Z . Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data. Adv Math, 2014, 259, 384- 420 | | 19 | Kim H , Lee J . The incompressible limits of viscous polytropic fluids with zero thermal conductivity coefficient. Comm Partial Differential Equations, 2005, 30, 1169- 1189 | | 20 | Klainerman S , Majda A . Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 1981, 34, 481- 524 | | 21 | Klainerman S , Majda A . Compressible and incompressible fluids. Comm Pure Appl Math, 1982, 35, 629- 653 | | 22 | Levermore C , Sun W , Trivisa K . A low Mach number limit of a dispersive Navier-Stokes system. SIAM J Math Anal, 2012, 44, 1760- 1807 | | 23 | Li Y . Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations. J Differential Equations, 2012, 252, 2725- 2738 | | 24 | Liu Q , Yin H . Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model. Nonlinear Anal, 2017, 149, 41- 55 | | 25 | Liu Q , Zhang P . Optimal time decay of the compressible micropolar fluids. J Differential Equations, 2016, 260, 7634- 7664 | | 26 | Liu Y . Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas. J Differential Equations, 2018, 264, 6933- 6958 | | 27 | Masmoudi N . Examples of singular limits in hydrodynamics. Handbook of Differential Equations: Evolutionary Equations, 2007, 3, 195- 275 | | 28 | Métivier G , Schochet S . The incompressible limit of the non-isentropic Eulere quations. Arch Ration Mech Anal, 2001, 158, 61- 90 | | 29 | Métivier G , Schochet S . Averaging theorems for conservative systems and the weakly compressible Euler equations. J Differential Equations, 2003, 187, 106- 183 | | 30 | Schochet S . The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm Math Phys, 1986, 104, 49- 75 | | 31 | Schochet S. The mathematical theory of the incompressible limit in fluid dynamics// Friedlander S, Serre D. Handbook of Mathematical Fluid Dynamics. Vol Ⅳ. Amsterdam: Elsevier, 2007 | | 32 | Su J . Incompressible limit of a compressible micropolar fluid model with general initial data. Nonlinear Anal, 2016, 132, 1- 24 | | 33 | Su J . Low Mach number limit of a compressible micropolar fluid model. Nonlinear Anal RWA, 2017, 38, 21- 34 | | 34 | Ukai S . The incompressible limit and the initial layer of the compressible Euler equation. J Math Kyoto Univ, 1986, 26, 323- 331 |
|