Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1671-1683.
Previous Articles Next Articles
Jianzhong Min1,*,Xiangao Liu2(),Zixuan Liu2(
)
Received:
2020-10-23
Online:
2021-12-26
Published:
2021-12-02
Contact:
Jianzhong Min
E-mail:xgliu@fudan.edu.cn;16110180007@fudan.edu.cn
Supported by:
CLC Number:
Jianzhong Min,Xiangao Liu,Zixuan Liu. Serrin's Type Solutions of the Incompressible Liquid Crystals System[J].Acta mathematica scientia,Series A, 2021, 41(6): 1671-1683.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Lin F , Liu C . Nonparabolic dissipative systems modeling the flow of liquid crystals. Communications on Pure and Applied Mathematics, 1995, 48 (5): 501- 537
doi: 10.1002/cpa.3160480503 |
2 |
Liu X G , Min J , Wang K , et al. Serrin's regularity results for the incompressible liquid crystals system. Discrete and Continuous Dynamical Systems-Series A, 2016, 36 (10): 5579- 5594
doi: 10.3934/dcds.2016045 |
3 |
Liu X G , Min J , Zhang X . $L^{3, \infty}$ solutions of the liquid crystals system. Journal of Differential Equations, 2019, 267, 2643- 2670
doi: 10.1016/j.jde.2019.03.027 |
4 | Foia C . Une remarque sur l'unicité des solutions des équations de Navier-Stokes en dimension n. Bulletin De La Societe Mathematique De France, 1961, 89, 1- 8 |
5 |
Serrin J . On the interior regularity of weak solutions of the Navier-Stokes equations. Archive for Rational Mechanics and Analysis, 1962, 9 (1): 187- 195
doi: 10.1007/BF00253344 |
6 | Liu C , F Lin . Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems-Series A, 2017, 2 (1): 1- 22 |
7 |
Caffarelli L , Kohn R , Nirenberg L . Partial regularity of suitable weak solutions of the navier-stokes equations. Communications on Pure and Applied Mathematics, 1982, 35 (6): 771- 831
doi: 10.1002/cpa.3160350604 |
8 |
Hu X , D Wang . Global solution to the three-dimensional incompressible flow of liquid crystals. Communications in Mathematical Physics, 2010, 296 (3): 861- 880
doi: 10.1007/s00220-010-1017-8 |
9 |
Huang T , F Lin , Liu C , et al. Finite time singularity of the nematic liquid crystal flow in dimension three. Archive for Rational Mechanics and Analysis, 2016, 221 (3): 1223- 1254
doi: 10.1007/s00205-016-0983-1 |
10 |
Tao H , Wang C . Blow up criterion for nematic liquid crystal flows. Communications in Partial Differential Equations, 2012, 37 (5): 875- 884
doi: 10.1080/03605302.2012.659366 |
11 | Liu C , Lin F . Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems-Series A, 2017, 2 (1): 1- 22 |
12 | Galdi . An Introduction to the Mathematical Theory of the Navier-Stokes Equations. New York: Springer, 2011 |
13 |
Giga Y . Solutions for semilinear parabolic equations in $L^{p}$ and regularity of weak solutions of the Navier-Stokes system. Journal of Differential Equations, 1986, 62 (2): 186- 212
doi: 10.1016/0022-0396(86)90096-3 |
14 |
Weissler F B . Semilinear evolution equations in Banach spaces. Journal of Functional Analysis, 1979, 32 (3): 277- 296
doi: 10.1016/0022-1236(79)90040-5 |
15 |
Weissler F B . Local existence and nonexistence for semilinear parabolic equations in $L^{p}$. Indiana University Mathematics Journal, 1980, 29 (1): 79- 102
doi: 10.1512/iumj.1980.29.29007 |
16 | Masuda K . Weak solutions of Navier-Stokes equations. Tohoku Mathematical Journal, 1984, 36 (4): 84- 89 |
|