Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1705-1717.
Previous Articles Next Articles
Xin Wu1,Rong Yuan2,Zhaohai Ma3,*()
Received:
2020-03-30
Online:
2021-12-26
Published:
2021-12-02
Contact:
Zhaohai Ma
E-mail:zhaohaima@mail.bnu.edu.cn; zhaohaima@cugb.edu.cn
Supported by:
CLC Number:
Xin Wu,Rong Yuan,Zhaohai Ma. Analysis on Critical Waves and Non-Critical Waves for Holling-Tanner Predator-Prey System with Nonlocal Diffusion[J].Acta mathematica scientia,Series A, 2021, 41(6): 1705-1717.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Chen Y Y , Guo J S , Yao C H . Traveling wave solutions for a continuous and discrete diffusive predator-prey model. J Math Anal Appl, 2017, 445, 212- 239
doi: 10.1016/j.jmaa.2016.07.071 |
2 | Cheng H M , Yuan R . Traveling wave solutions for a continuous and discrete diffusive predator-prey model. Appl Math Comput, 2018, 338, 12- 24 |
3 |
Ducrot A . Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system. J Math Pures Appl, 2013, 100, 1- 15
doi: 10.1016/j.matpur.2012.10.009 |
4 | Jin Y , Zhao X Q . Spatial dynamics of a periodic population model with dispersal. Nonlinearity, 2009, 222, 1167- 1189 |
5 |
李海银. 密度制约且具有时滞捕食-被捕食模型的Hopf分支. 数学物理学报, 2019, 39A (2): 358- 371
doi: 10.3969/j.issn.1003-3998.2019.02.015 |
Li H Y . Hopf bifurcation of delayed density-dependent predator-prey model. Acta Math Sci, 2019, 39A (2): 358- 371
doi: 10.3969/j.issn.1003-3998.2019.02.015 |
|
6 |
Liang X , Zhao X Q . Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun Pure Appl Math, 2007, 60, 1- 40
doi: 10.1002/cpa.20154 |
7 | Murray J D . Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications. New York: Springer, 2003 |
8 | Renshaw E . Modelling Biological Populations in Space and Time. Cambridge: Cambridge University Press, 1991 |
9 |
Saez E , Gonzalez-Olivares E . Dynamics of a predator-prey model. SIAM J Appl Math, 1999, 59, 1867- 1878
doi: 10.1137/S0036139997318457 |
10 | 史红波, 李万同, 林国. 一类修正的Leslie-Gower型扩散捕食系统的定性分析. 数学物理学报, 2011, 31A (5): 1403- 1415 |
Shi H B , Li W T , Lin G . Qualitative analysis of a modified Leslie-Gower predator-prey system with diffusion. Acta Math Sci, 2011, 31A (5): 1403- 1415 | |
11 | Su T , Zhang G B . Invasion traveling waves for a discrete diffusive ratio-dependent predator-prey model. Acta Math Sci, 2020, 40B (5): 1459- 1476 |
12 |
Tanner J T . The stability and the intrinsic growth rates of prey and predator populations. Ecology, 1975, 56, 855- 867
doi: 10.2307/1936296 |
13 | 王雪臣, 魏俊杰. 时滞在具有Ivlev型功能反应函数的捕食者-食饵扩散系统中的作用. 数学物理学报, 2014, 34A (3): 234- 250 |
Wang X C , Wei J J . The effect of delay on a diffusive predator-prey system with Ivlev-type functional response. Acta Math Sci, 2014, 34A (2): 234- 250 | |
14 |
Wollkind D J , Collings J B , Logan J A . Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies. Bull Math Biol, 1988, 50, 379- 409
doi: 10.1016/S0092-8240(88)90005-5 |
15 |
Zhang G B , Li W T , Wang Z C . Spreading speeds and traveling waves for nonlocal dispersal equation with degenerate monostable nonlinearity. J Differential Equations, 2012, 252, 5096- 5124
doi: 10.1016/j.jde.2012.01.014 |
16 |
Zhao Z H , Li R , Zhao X K , Feng Z S . Traveling wave solutions of a nonlocal dispersal predator-prey model with spatiotemporal delay. Z Angew Math Phys, 2018, 69, Article number: 146
doi: 10.1007/s00033-018-1041-7 |
[1] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[2] | Hongmei Cheng,Rong Yuan. Forced Waves of a Delayed Reaction-Diffusion Equation with Nonlocal Diffusion Under Shifting Environment [J]. Acta mathematica scientia,Series A, 2022, 42(2): 491-501. |
[3] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[4] | Yingjie Fu,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics of a Stochastic Predator-Prey Model with Pulse Input in a Polluted Environment [J]. Acta mathematica scientia,Series A, 2019, 39(3): 674-688. |
[5] | Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[6] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[7] | HU Guang-Ping, LI Xiao-Ling. Stationary Patterns of a Leslie-Gower Type Three Species Model with Cross-Diffusions [J]. Acta mathematica scientia,Series A, 2013, 33(1): 16-27. |
[8] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
[9] | SHI Hong-Bo, LI Wan-Tong, LIN Guo. Qualitative Analysis of a Modified Leslie-Gower Predator-Prey System with Diffusion [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1403-1415. |
[10] | QIN Fa-Jin. Multiple Periodic Solutions for a Delayed Stage-Structure Predator-Prey Systems |with Harvesting Rate and Diffusion [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1613-1622. |
[11] | Mo Jiaqi; Tang Rongrong. The Asymptotic Behavior of Solution for the Reaction Diffusion Equations [J]. Acta mathematica scientia,Series A, 2007, 27(2): 296-301. |
[12] |
Liang Zhiqing;Chen Lansun.
Stability of Periodic Solution for a Discrete Leslie Predator-prey System [J]. Acta mathematica scientia,Series A, 2006, 26(4): 634-640. |
[13] | XIE Feng. Singular Perturbation for a Class of Reaction Diffusion Equation [J]. Acta mathematica scientia,Series A, 2003, 23(3): 369-373. |
[14] | MO Jia-Qi. The Nonlinear Singularly Perturbed Problems for Reaction Diffusion Equations [J]. Acta mathematica scientia,Series A, 2003, 23(3): 374-378. |
[15] | Teng Zhidong, Chen Lansun. Necessary and Sufficient Conditions for Existence of Positive Periodic Solutions of Periodic Predator-Prey Systems [J]. Acta mathematica scientia,Series A, 1998, 18(4): 402-406. |
|