Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1779-1790.
Previous Articles Next Articles
Received:
2020-10-28
Online:
2021-12-26
Published:
2021-12-02
Contact:
Changmu Chu
E-mail:gzmychuchangmu@sina.com
Supported by:
CLC Number:
Changmu Chu,Lu Meng. Existence of Positive Solutions for Semilinear Elliptic Equation with Variable Exponent[J].Acta mathematica scientia,Series A, 2021, 41(6): 1779-1790.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Ambrosetti A , Rabinowitz P H . Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14, 347- 381 |
2 |
Costa D G , Magalhães C A . Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal, 1994, 23, 1401- 1412
doi: 10.1016/0362-546X(94)90135-X |
3 |
Fang F , Liu S B . Nontrivial solutions of superlinear p-Laplacian equations. J Math Analysis Applic, 2009, 351, 138- 146
doi: 10.1016/j.jmaa.2008.09.064 |
4 |
Furtado M F , Silva E D . Superlinear elliptic problems under the non-quadraticity condition at infinity. Proc Roy Soc Edinburgh Sect A, 2015, 145 (4): 779- 790
doi: 10.1017/S0308210515000141 |
5 | Ke X F , Tang C L . Existence and multiplicity of solutions to semilinear elliptic equation with nonlinear term of superlinear and subcritical growth. Electron J Differential Equations, 2018, 88, 1- 17 |
6 |
Lan Y Y , Ta ng , C L . Existence of solutions to a class of semilinear elliptic equations involving general subcritical growth. Proc Roy Soc Edinburgh Sect A, 2014, 144 (4): 809- 818
doi: 10.1017/S030821051300036X |
7 |
Liu Z , Wang Z Q . On the Ambrosetti-Rabinowitz super-linear condition. Advanced Nonlinear Studies, 2004, 4 (4): 563- 574
doi: 10.1515/ans-2004-0411 |
8 |
Miyagaki O H , Souto M A S . Superlinear problems without Ambrosetti and Rabinowitz growth condition. J Differential Equations, 2008, 245, 3628- 3638
doi: 10.1016/j.jde.2008.02.035 |
9 |
Schechter M , Zou W M . Superlinear problems. Pacific J Math, 2004, 214, 145- 160
doi: 10.2140/pjm.2004.214.145 |
10 | Komiya Y , Kajikiya R . Existence of infinitely many solutions for the (p, q)-Laplace equation. NoDEA Nonlinear Differential Equations Appl, 2016, 23 (49): 1- 23 |
11 | Alves C O , Ercole G , Huamán Bolaños M D . Ground state solutions for a semilinear elliptic problem with critical-subcritical growth. Adv Nonlinear Anal, 2020, 9 (1): 108- 123 |
12 |
Cao D M , Li S L , Liu Z Y . Nodal solutions for a supercritical semilinear problem with variable exponent. Calc Var Partial Differential Equations, 2018, 57, 19- 38
doi: 10.1007/s00526-017-1293-7 |
13 | Hashizume M , Sano M . Strauss's radial compactness and nonlinear elliptic equation involving a variable critical exponent. J Funct Spaces, 2018, Article ID: 5497172 |
14 | Kurata K , Shioji N . Compact embedding from $W_{0}^{1, 2}(\Omega)$ to $L^{q(x)}(\Omega)$ and its application to nonlinear elliptic boundary value problem with variable critical exponent. J Math Anal Appl, 2018, 339 (2): 1386- 1394 |
15 | Liu J , Liao J F , Tang C L . Ground state solutions for semilinear elliptic equations with zero mass in $\mathbb{R}^{N}$. Electron J Differential Equations, 2015, 84, 1- 11 |
16 | Marcos do J , Ruf B , Ubilla P . On supercritical Sobolev type inequalities and related elliptic equations. Calc Var Partial Differential Equations, 2016, 55 (4): 55- 83 |
17 |
Liu X Q , Zhao J F . p-Laplacian equations in $\mathbb{R}^{N}$ with finite potential via truncation method. Adv Nonlinear Anal, 2017, 17 (3): 595- 610
doi: 10.1515/ans-2015-5059 |
18 | Vazquez J L . A strong maximum principle for some quasilinear elliptic equations. Appl Math Optim, 1984, 12 (3): 191- 202 |
|