Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1816-1829.
Previous Articles Next Articles
Received:
2020-07-08
Online:
2021-12-26
Published:
2021-12-02
Contact:
Shuying Tian
E-mail:DuYuge@whut.edu.cn;sytian@whut.edu.cn
Supported by:
CLC Number:
Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity[J].Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Acerbi E , Mingione G . Regularity results for stationary electro-rheological fluids. Arch Ration Mech Anal, 2002, 164 (3): 213- 259
doi: 10.1007/s00205-002-0208-7 |
2 |
Cavalcanti M M , Cavalcanti V N D , Lasiecka I , et al. Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Adv Nonlinear Anal, 2017, 6 (2): 121- 145
doi: 10.1515/anona-2016-0027 |
3 | Christensen R . Theory of Viscoelasticity: An Introduction. New York: Academic Press, 1982 |
4 |
Ball J M . Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart J Math, 1977, 28 (4): 473- 486
doi: 10.1093/qmath/28.4.473 |
5 | Brézis H , Cazenave T . A nonlinear heat equation with singular initial data. J Anal Math, 1996, 68, 186- 212 |
6 |
Levine H A . Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $\mathcal{P} u_{t}=-\mathcal{A} u+\mathcal{F}(u)$. Arch Ration Mech Anal, 1973, 51 (5): 371- 386
doi: 10.1007/BF00263041 |
7 |
Messaoudi S A . Blow-up of solutions of a semilinear heat equation with a memory term. Abstr Appl Anal, 2005, 2005 (2): 87- 94
doi: 10.1155/AAA.2005.87 |
8 | Messaoudi S A . Blow-up of solutions of a semilinear heat equation with a visco-elastic term. Prog Nonlinear Differ Equ Appl, 2005, 64, 351- 356 |
9 |
Tian S . Bounds for blow-up time in a semilinear parabolic problem with viscoelastic term. Comput Math Appl, 2017, 74 (4): 736- 743
doi: 10.1016/j.camwa.2017.05.018 |
10 |
Di H , Shang Y . Global existence and nonexistence of solutions for the nonlinear pseudo-parabolic equation with a memory term. Math Methods Appl Sci, 2015, 38 (17): 3923- 3936
doi: 10.1002/mma.3327 |
11 |
Luan W , Yang Z . Global existence and bounds for blow-up time in a class of nonlinear pseudo-parabolic equations with a memory term. Math Methods Appl Sci, 2019, 42 (8): 2597- 2612
doi: 10.1002/mma.5535 |
12 |
Sun F , Liu L , Wu Y . Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term. Appl Anal, 2019, 98 (4): 735- 755
doi: 10.1080/00036811.2017.1400536 |
13 |
Chen H , Luo P , Liu G . Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. J Math Anal Appl, 2015, 422 (1): 84- 98
doi: 10.1016/j.jmaa.2014.08.030 |
14 | Payne L E , Sattinger D H . Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22 (3/4): 273- 303 |
15 |
Han Y . Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity. J Math Anal Appl, 2019, 474 (1): 513- 517
doi: 10.1016/j.jmaa.2019.01.059 |
16 |
Chen H , Tian S . Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. J Differential Equations, 2015, 258 (12): 4424- 4442
doi: 10.1016/j.jde.2015.01.038 |
17 | Ding H , Zhou J . Two new blow-up conditions for a pseudo-parabolic equation with logarithmic nonlinearity. Bulletin Korean Math Soc, 2019, 56 (5): 1285- 1296 |
18 |
Nhan L C , Truong L X . Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity. Comput Math Appl, 2017, 73 (9): 2076- 2091
doi: 10.1016/j.camwa.2017.02.030 |
|