Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1897-1911.
Previous Articles Next Articles
Received:
2021-03-01
Online:
2021-12-26
Published:
2021-12-02
Contact:
Xianjun Long
E-mail:heyuehong1111@163.com;xianjunlong@ctbu.edu.cn
Supported by:
CLC Number:
Yuehong He,Xianjun Long. A Inertial Contraction and Projection Algorithm for Pseudomonotone Variational Inequality Problems[J].Acta mathematica scientia,Series A, 2021, 41(6): 1897-1911.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems. New York: Springer, 2003 |
2 | Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York: Marcel Dekker, 1983 |
3 |
He B . A class of projection and contraction methods for monotone variational inequalities. Appl Math Optim, 1997, 35 (1): 69- 76
doi: 10.1007/s002459900037 |
4 |
Cai X , Gu G , He B . On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput Optim Appl, 2014, 57 (2): 339- 363
doi: 10.1007/s10589-013-9599-7 |
5 |
Censor Y , Gibali A , Reich S . The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148 (2): 318- 335
doi: 10.1007/s10957-010-9757-3 |
6 | 万升联. 解变分不等式的一种二次投影算法. 数学物理学报, 2021, 41A(1): 237-244 |
Wan S L. A double projection algorithm for solving variational inequalities. 2021, 41A(1): 237-244 | |
7 |
Tseng P . A modified forward-backward splitting method for maximal monotone mappings. SIAM J Control Optim, 2000, 38 (2): 431- 446
doi: 10.1137/S0363012998338806 |
8 |
Karamardian S . Complementarity problems over cones with monotone and pseudo-monotone maps. J Optim Theory Appl, 1976, 18 (4): 445- 454
doi: 10.1007/BF00932654 |
9 | Korpelevich G M . The extragradient method for finding saddle points and other problems. Ekonomika i Mat Metody, 1976, 12, 747- 756 |
10 |
Dong L Q , Cho Y J , Zhong L L , Rassias M T . Inertial projection and contraction algorithms for variational inequalities. J Glob Optim, 2018, 70 (3): 687- 704
doi: 10.1007/s10898-017-0506-0 |
11 |
Thong D V , Vinh N T , Cho Y J . New strong convergence theorem of the inertial projection and contraction method for variational inequality problems. Numer Algor, 2020, 84 (1): 285- 305
doi: 10.1007/s11075-019-00755-1 |
12 |
Yang J , Liu H W . Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer Algor, 2019, 80 (3): 741- 752
doi: 10.1007/s11075-018-0504-4 |
13 |
Gibali A , Thong D V , Tuan P A . Two simple projection-type methods for solving variational inequalities. Anal Math Phys, 2019, 9, 2203- 2225
doi: 10.1007/s13324-019-00330-w |
14 |
Maingé P E . A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J Control Optim, 2008, 47 (3): 1499- 1515
doi: 10.1137/060675319 |
15 |
Xu H K . Iterative algorithms for nonlinear operators. J Lond Math Soc, 2002, 66 (1): 240- 256
doi: 10.1112/S0024610702003332 |
|