Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1969-1979.
Previous Articles Next Articles
Xin Xie1(),Jianquan Li1,*(
),Yuping Wang1,Dian Zhang2
Received:
2020-11-17
Online:
2021-12-26
Published:
2021-12-02
Contact:
Jianquan Li
E-mail:1424967994@qq.com;jianq_li@263.net
Supported by:
CLC Number:
Xin Xie,Jianquan Li,Yuping Wang,Dian Zhang. A Qualitative Analysis of a Tumor-Immune System with Antigenicity[J].Acta mathematica scientia,Series A, 2021, 41(6): 1969-1979.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Subhas K , Nieto J J . Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Applied Mathematics and Computation, 2019, 340, 180- 205
doi: 10.1016/j.amc.2018.08.018 |
2 |
Kirschner D , Panetta J C . Modeling immunotherapy of the tumor-immune interaction. Journal of Mathematical Biology, 1998, 37, 235- 252
doi: 10.1007/s002850050127 |
3 |
Khajanchi S , Banerjee S . Stability and bifurcation analysis of delay induced tumor immune interaction model. Applied Mathematics and Computation, 2014, 248, 652- 671
doi: 10.1016/j.amc.2014.10.009 |
4 |
Khajanchi S , Nieto J . Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Applied Mathematics and Computation, 2019, 340, 180- 205
doi: 10.1016/j.amc.2018.08.018 |
5 |
Letellier C , Denis F , Aguirre L A . What can be learned from chaotic cancer model?. Journal of Theoretical Biology, 2013, 322, 7- 16
doi: 10.1016/j.jtbi.2013.01.003 |
6 |
Kuznetsov V A , Makalkin I A , Taylor M A , et al. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bulletin of Mathematical Biology, 1994, 56, 295- 321
doi: 10.1016/S0092-8240(05)80260-5 |
7 |
Robert D , Schreiber , Lloyd J , et al. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science, 2011, 331 (6024): 1565- 1570
doi: 10.1126/science.1203486 |
8 |
Matthew D V , Michael H K , Robert D S , et al. Natural innate and adaptive immunity to cancer. Annual Review of Immunology, 2011, 29 (1): 235- 71
doi: 10.1146/annurev-immunol-031210-101324 |
9 |
Araujo R P , McElwain D . A history of the study of solid tumour growth: The contribution of mathematical modelling. Bull Math Biol, 2004, 66, 1039- 1091
doi: 10.1016/j.bulm.2003.11.002 |
10 | 黄佩, 蔺小林, 李建全, 等. 一类肿瘤-免疫系统动力学性态的全局分析. 高校应用数学学报A辑, 2019, 34 (2): 181- 189 |
Huang P , Lin X L , Li J Q , et al. Global analysis of a kind of tumor-immune system dynamics. Journal of Applied Mathematics Series A, 2019, 34 (2): 181- 189 | |
11 | 陶有山, 边保军. 抑制剂作用下肿瘤生长模型的参数识别. 数学物理学报, 2009, 29 (5): 1175- 1186 |
Tao Y S , Bian B J . Parameter identification of tumor growth model under the action of inhibitor. Acta Math Sci, 2009, 29 (5): 1175- 1186 | |
12 | 卫雪梅, 崔尚斌. 一个肿瘤生长自由边界问题解的渐近性态. 数学物理学报, 2007, 27 (4): 648- 659 |
Wei X M , Cui S B . The Asymptotic behavior of the solution of a tumor growth free boundary problem. Acta Math Sci, 2007, 27 (4): 648- 659 | |
13 | Adam J A , Bellomo N . A Survey of models for tumor-immune system dynamics. Modeling & Simulation in Science Engineering & Technology, 1996, 59 (5): 1023- 1024 |
14 | 马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法. 北京: 科学出版社, 2015 |
Ma Z E , Zhou Y C , Li C Z . Qualitative and Stable Methods of Ordinary Differential Equations. Beijing: Science Press, 2015 | |
15 | Adams J F . Stable Homotopy and Generalised Homology. Chicago: University of Chicago Press, 1974 |
16 |
Kirschner D , Panetta J C . Modeling immunotherapy of the tumor-immune interaction. Journal of Mathematical Biology, 1998, 37 (3): 235- 252
doi: 10.1007/s002850050127 |
17 | Bodnar M , Piotrowska M J , Urszula Foryś , et al. Model of tumour angiogenesis-analysis of stability with respect to delays. Mathematical Bioences and Engineering, 2013, 10 (1): 19- 35 |
18 |
Pillis L D , Fister K R , Gu W , et al. Mathematical model creation for cancer chemo-immunotherapy. Computational and Mathematical Methods in Medicine, 2009, 10 (3): 165- 184
doi: 10.1080/17486700802216301 |
19 | Chaplain M, Matzavinos A. Mathematical Modelling of Spatio-Temporal Phenomena in Tumour Immunology. Berlin: Springer, 2006 |
20 | Galach M . Dynamics of the tumor-immune system competition: the effect of time delay. Applied Mathematics and Computer Science, 2003, 13, 395- 406 |
[1] | Lv Dongting. Globally Asymptotic Stability of 2-Species Reaction-Diffusion Systems of Spatially Inhomogeneous Models [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1171-1183. |
[2] | Liang Qing. Existence, Uniqueness and Stability of the Global Solutions to Two Classes of Pantogragh Stochastic Functional Differential Equations with Markovian Switching [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1184-1205. |
[3] | Liu Yu, Chen Guanggan, Li Shuyong. Nonlinear Stability of Traveling Waves for Stochastic Kuramoto-Sivashinsky Equation [J]. Acta mathematica scientia,Series A, 2025, 45(3): 790-806. |
[4] | Liu Jia, Bao Xiongxiong. Asymptotic Stability of Pyramidal Traveling Front for Nonlocal Delayed Diffusion Equation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 44-53. |
[5] | Xiao Jianglong, Song Yongli, Xia Yonghui. Spatiotemporal Dynamics Induced by the Interaction Between Fear and Schooling Behavior in a Diffusive Model [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1577-1594. |
[6] | Tang Jun, Wu Ailong. Event-Triggered Control for a Class of Stochastic Time-Delay Nonlinear Systems [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1607-1616. |
[7] | Zhang Yongxue, Jia Wensheng. Stability of Solutions for Controlled Systems of Generalized Multiobjective Multi-Leader-Follower Games Under Bounded Rationality [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1689-1702. |
[8] | Yang Hong, Zhang Xiaoguang. A Stochastic SIS Epidemic Model on Simplex Complexes [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1392-1399. |
[9] | Fan Tianjiao, Feng Lichao, Yang Yanmei. Generalization of Inequality and Its Application in Additive Time-Varying Delay Systems [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1335-1351. |
[10] | Guo Yan, Xu Xiaochuan. Local Solvability and Stability of the Inverse Spectral Problems for the Discontinuous Sturm-Liouville Problem with the Mixed Given Data [J]. Acta mathematica scientia,Series A, 2024, 44(4): 859-870. |
[11] | Pan Lijun, Lv Shun, Weng Shasha. Riemann Solution and Stability of Coupled Aw-Rascle-Zhang Model [J]. Acta mathematica scientia,Series A, 2024, 44(4): 885-895. |
[12] | Zhang Chunguo, Sun Baonan, Fu Yuzhi, Yu Xin. Stabilization of 2-D Mindlin Timoshenko Plate Systems with Local Damping [J]. Acta mathematica scientia,Series A, 2024, 44(4): 946-959. |
[13] | Gao Caixia, Zhao Dongxia. The Delayed Control and Input-to-State Stability of ARZ Traffic Flow Model with Disturbances [J]. Acta mathematica scientia,Series A, 2024, 44(4): 960-977. |
[14] | Xu Rui, Zhou Kaijuan, Bai Ning. A with-in Host HIV-1 Infection Dynamics Model Based on Virus-to-cell Infection and Cell-to-cell Transmission [J]. Acta mathematica scientia,Series A, 2024, 44(3): 771-782. |
[15] | Qiu Yangcong, Wang Qiru. Hyers-Ulam-Rassias Stability of First-Order Nonlinear Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2024, 44(2): 465-475. |
|