Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 321-337.
Received:
2021-05-07
Online:
2022-04-26
Published:
2022-04-18
Contact:
Ruiwei Xu
E-mail:rwxu@htu.edu.cn;leimiaoxin0518@126.com
Supported by:
CLC Number:
Ruiwei Xu,Miaoxin Lei. Classification of Calabi Hypersurfaces in
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Bokan N , Nomizu K , Simon U . Affine hypersurfaces with parallel cubic forms. Tôhoku Math J, 1990, 42: 101- 108 |
2 | Calabi E . Improper affine hyperspheres of convex type and a generalization of a theorem of Jörgens. Michgan J Math, 1958, 5: 105- 126 |
3 |
Cheng X , Hu Z . An optimal inequality on locally strongly convex centroaffine hypersurfaces. J Geom Anal, 2018, 28: 643- 655
doi: 10.1007/s12220-017-9836-x |
4 |
Cheng X , Hu Z , Moruz M . Classification of the locally strongly convex centroaffine hypersurfaces with parallel cubic form. Results Math, 2017, 72: 419- 469
doi: 10.1007/s00025-017-0651-2 |
5 |
Dillen F , Vrancken L . 3-dimensional affine hypersurfaces in ${\mathbb R}^4$ with parallel cubic form. Nagoya Math J, 1991, 124: 41- 53
doi: 10.1017/S0027763000003767 |
6 |
Dillen F , Vrancken L , Yaprak L . Affine hypersurfaces with parallel cubic form. Nagoya Math J, 1994, 135: 153- 164
doi: 10.1017/S0027763000005006 |
7 |
Hu Z , Li H , Simon U , Vrancken L . On locally strongly convex affine hypersurfaces with parallel cubic form. Part Ⅰ. Diff Geom Appl, 2009, 27: 188- 205
doi: 10.1016/j.difgeo.2008.10.005 |
8 | Hu Z , Li H , Vrancken L . Locally strongly convex affine hypersurfaces with parallel cubic form. J Diff Geom, 2011, 87: 239- 307 |
9 | Kobayashi S, Nomizu K. Foundations of Differential Geometry. Vol Ⅰ. New York: Interscience Publishers, 1963 |
10 | Li A M. Affine Kähler manifolds[R]. Lodz: International Conference in Banach Center of Poland, 2005 |
11 | Li A M, Simon U, Zhao G, Hu Z. Global Affine Differential Geometry of Hypersurfaces. Berlin: De Gruyter, 2015 |
12 | Li A M, Xu R W, Simon U, Jia F. Affine Bernstein Problems and Monge-Ampère Equations. New Jersey: World Scientific, 2010 |
13 |
Li A M , Penn G . Uniqueness theorems in affine differential geometry. Part Ⅱ. Results Math, 1988, 13: 308- 317
doi: 10.1007/BF03323247 |
14 | Li H . Variational problems and PDEs in affine differential geometry. Banach Center Publ, 2005, 69 (1): 9- 41 |
15 |
Li H , Vrancken L . A basic inequality and new characterization of Whitney spheres in a complex space form. Israel J Math, 2005, 146: 223- 242
doi: 10.1007/BF02773534 |
16 | Liu H L , Wang C P . Centroaffine surfaces with parallel traceless cubic form. Bull Belg Math Soc, 1997, 4: 493- 499 |
17 |
Magid M , Nomizu K . On affine surfaces whose cubic forms are parallel relative to the affine metric. Proc Japan Acad Ser A, 1989, 65: 215- 218
doi: 10.2183/pjab.65.215 |
18 | Pogorelov A V. The Minkowski Multidimensional Problem. New York: John Wiley & Sons, 1978 |
19 | Xu R W, Li X X. On the complete solutions to the Tchebychev-Affine-Kähler equation and its geometric significance. 2019(Submmitted) |
20 |
Xu R W , Lei M X . Classification of Calabi hypersurfaces with parallel Fubini-Pick form. Diff Geom Appl, 2021, 74: 101707
doi: 10.1016/j.difgeo.2020.101707 |
[1] | Chen Chizhou, Guo Hongxin. Volume Growth for Gradient Steady Solitons of the Extended Ricci Flow [J]. Acta mathematica scientia,Series A, 2025, 45(3): 850-857. |
[2] | Zhang Youhua. A Vanishing Theorem for$p$-harmonic$\ell$-forms in Space with Constant Curvature [J]. Acta mathematica scientia,Series A, 2024, 44(1): 26-36. |
[3] | Sheng Weimin, Wang Yinhang. An Extension of Minkowski Formulae for Free Boundary Hypersurfaces in a Ball [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1641-1648. |
[4] | Yang Dengyun, Zhang Jinguo, Tao Yongqian. Spectral Geometry of Willmore and Extremal Hypersurfaces [J]. Acta mathematica scientia,Series A, 2023, 43(1): 35-42. |
[5] | He Yue, Ruan Qihua. Refined Lower Bound for Sums of Eigenvalues of the Laplace Operator [J]. Acta mathematica scientia,Series A, 2023, 43(1): 14-26. |
[6] |
Ya Gao,Jing Mao,Chunlan Song.
Existence and Uniqueness of Solutions to the Constant Mean Curvature Equation with Nonzero Neumann Boundary Data in Product Manifold |
[7] | Yue He,Hailong Her. An Estimate of Spectral Gap for Schrödinger Operators on Compact Manifolds [J]. Acta mathematica scientia,Series A, 2020, 40(2): 257-270. |
[8] | Zhuhong Zhang. Four-Dimensional Shrinking Gradient Ricci Solitons with Half Positive Isotropy Curvature [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1011-1017. |
[9] | Huang Qin, Ruan Qihua, Chen Fan. Conformal Vector Fields and Some Rigidity Theorems [J]. Acta mathematica scientia,Series A, 2017, 37(4): 615-623. |
[10] | Chen Chih-Wei. A Note on Geodesic Loops in Complete Non-Compact Ricci Solitons [J]. Acta mathematica scientia,Series A, 2017, 37(1): 1-6. |
[11] | Qiu Wanghua, Hou Zhonghua. Surfaces in Products of Semi-Riemannian Space Forms with Parallel Mean Curvature Vector [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1027-1039. |
[12] | He Yue. New Estimates of Lower Bound for the First Eigenvalue on Compact Manifolds with Positive Ricci Curvature [J]. Acta mathematica scientia,Series A, 2016, 36(2): 215-230. |
[13] | Ruan Qihua. An Overdetermined Anisotropic Problem with Nonconstant Boundary Condition [J]. Acta mathematica scientia,Series A, 2016, 36(1): 27-35. |
|