Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 365-378.
Previous Articles Next Articles
Shengxin Hua(),Guolin Yu*(
),Wenyan Han(
),Xiangyu Kong(
)
Received:
2021-05-19
Online:
2022-04-26
Published:
2022-04-18
Contact:
Guolin Yu
E-mail:1445143549@qq.com;guolin_yu@126.com;1965447108@qq.com;kxywz08@163.com
Supported by:
CLC Number:
Shengxin Hua,Guolin Yu,Wenyan Han,Xiangyu Kong. Characterization of Optimality to Constrained Vector Equilibrium Problems via Approximate Subdifferential[J].Acta mathematica scientia,Series A, 2022, 42(2): 365-378.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 余国林, 刘三阳. 集值映射的Henig有效次微分及其稳定性. 数学物理学报, 2008, 28A (3): 48- 56 |
Yu G L , Liu S Y . The Henig eficient subdiferential of set-valued mapping and stability. Acta Mathematica Scientia, 2008, 28A (3): 48- 56 | |
2 |
Su T V , Hien N D . Studniarski's derivatives and efficiency conditions for constrained vector equilibrium problems with applications. Optimization, 2021, 70 (1): 121- 148
doi: 10.1080/02331934.2019.1702985 |
3 |
Su V T . New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces. 4OR-A Quarterly Journal of Operations Research, 2018, 16 (2): 173- 198
doi: 10.1007/s10288-017-0360-4 |
4 | Luu D V , Mai T T . On optimality conditions for Henig efficiency and superefficiency in vector equilibrium problems. Numerical Functional Analysis and Optimization, 2018, 10 (2): 1- 22 |
5 |
龙宪军. Asplund空间中非凸向量均衡问题近似解的最优性条件. 数学物理学报, 2014, 34A (3): 593- 602
doi: 10.3969/j.issn.0252-9602.2014.03.001 |
Long X Y . Optim ality conditions for approxim ate solutions on nonconvex vector equilibrium problem s in Asplund spaces. Acta Mathematica Scientia, 2014, 34A (3): 593- 602
doi: 10.3969/j.issn.0252-9602.2014.03.001 |
|
6 |
Phan Nhat Tinh . Optimality conditions for nonsmooth vector problems in normed spaces. Optimization, 2020, 69 (6): 1151- 1186
doi: 10.1080/02331934.2019.1686502 |
7 | 韩文艳, 余国林. 非光滑向量均衡问题近似拟全局真有效解的最优性条件. 应用数学学报, 2021, 44 (1): 49- 60 |
Han W Y , Yu G L . Optimality conditions for approximate quasi globally proper efficient solutions to nonsmooth vector equilibrium problems. Acta Mathematica Applicatae Sinica, 2021, 44 (1): 49- 60 | |
8 | Zhang Y M , Yu G L , Han W Y , et al. Optimality conditions and scalarization of approximate quasi weak efficient solutions for vector equilibrium problem. Complexity, 2020, 2020 (1): 1- 7 |
9 |
Ioffe A D . Approximate subdifferentials and applications Ⅱ. Mathematika, 1986, 33 (1): 111- 128
doi: 10.1112/S0025579300013930 |
10 |
Feng Y , Qiu Q . Optimality conditions for vector equilibrium problems with constraint in Banach spaces. Optimization Letters, 2014, 8 (6): 1931- 1944
doi: 10.1007/s11590-013-0695-5 |
11 |
Luu D , Hang D . Efficient solutions and optimality conditions for vector equilibrium problems. Mathematical Methods of Operations Research, 2014, 79 (2): 163- 177
doi: 10.1007/s00186-013-0457-2 |
12 | 余国林, 刘万里. 生成锥内部凸-锥-类凸集值优化问题的Henig真有效性. 数学物理学报, 2009, 29A (3): 800- 809 |
Yu G L , Liu W L . Henig proper eficiency in the ic-conen-convexlike set-valued optimization problems. Acta Mathematica Scientia, 2009, 29A (3): 800- 809 | |
13 |
Li S J , Zhao P . A method of duality for a mixed vector equilibrium problem. Optimization Letters, 2010, 4 (1): 85- 96
doi: 10.1007/s11590-009-0141-x |
14 | Fu H Y , Dan B , Liu X Y . Existence and duality of generalized ε-vector equilibrium problems. Journal of Applied Mathematics, 2012, 2012 (6): 1- 13 |
15 | Anh N L H . Duality for vector equilibrium problems with constraints. Bulletin of the Iranian Mathematical Society, 2017, 43 (6): 1679- 1694 |
16 |
Khanh P Q , Tung N M . Optimality conditions and duality for nonsmooth vector equilibrium problems with constraints. Optimization, 2015, 64 (7): 1547- 1575
doi: 10.1080/02331934.2014.886036 |
17 | Chen J , Elisabeth Köbis , Yao J C . Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints. Journal of Optimization Theory and Applications, 2018, 181: 411- 436 |
18 | Clarke F H. Optimization and Nonsmooth Analysis. New York: John Wiley and Sons, 1983 |
19 |
Jourani A , Thibault L . Approximate subdifferential of composite functions. Bulletin of the Australian Mathematical Society, 1993, 47 (3): 443- 455
doi: 10.1017/S0004972700015276 |
20 |
Gerth C , Weidner P . Nonconvex separation theorems and some applications in vector optimization. Journal of Optimization Theory and Applications, 1990, 67 (2): 297- 320
doi: 10.1007/BF00940478 |
[1] | Chen Hongye, Fang Donghui, Wu Kexing. Optimality Conditions and Total Lagrange Dualities for Evenly Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1255-1267. |
[2] | Ran Bo,Sun Xiangkai,Guo Xiaole. On Robust Optimal Solutions for a Class of Uncertain Fractional Polynomial Optimization Problems [J]. Acta mathematica scientia,Series A, 2025, 45(2): 630-639. |
[3] | Fang Donghui,Wang Junying. Characterizations of Approximate Solution and Approximate Duality for Quasiconvex Programming [J]. Acta mathematica scientia,Series A, 2025, 45(2): 640-652. |
[4] | Hu Shanshan, He Suxiang. Optimality Conditions for Non-Negative Group Sparse Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2024, 44(2): 500-512. |
[5] | Huang Jiayi, Sun Xiangkai. Duality Characterizations for a Class of Two-Stage Adjustable Robust Multiobjective Programming [J]. Acta mathematica scientia,Series A, 2024, 44(1): 185-194. |
[6] | Zhao Qian, Yan Lu. Nonlocal KP-type Equations with Generalized Bilinear Derivative [J]. Acta mathematica scientia,Series A, 2023, 43(1): 143-158. |
[7] | Xie Feifei, Fang Donghui. Approximate Farkas Lemma and Approximate Duality for Fractional Optimization Problems [J]. Acta mathematica scientia,Series A, 2023, 43(1): 305-320. |
[8] | Hao Zhang,Na Wang. A Class of Weakly Nonlinear Critical Singularly Perturbed Integral Boundary Problems [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1060-1073. |
[9] | Jiaolang Wang,Donghui Fang. Approximate Optimality Conditions and Mixed Type Duality for a Class of Non-Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 651-660. |
[10] | Juan Wang,Jie Zhao. Homogenization of the Oscillating Robin Mixed Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2021, 41(1): 81-90. |
[11] | Meng Li,Guolin Yu. Optimality of Robust Approximation Solutions for Uncertain Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1007-1017. |
[12] | Dongping Ye,Donghui Fang. Lagrange Dualities for Robust Composite Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1095-1107. |
[13] | Donghui Fang,Liping Tian,Xianyun Wang. Strong Fenchel-Lagrange Duality for Convex Optimization Problems with Composite Function [J]. Acta mathematica scientia,Series A, 2020, 40(1): 20-30. |
[14] | Yuehu Wang,Baoqing Liu. Order-Preservation of Solution Correspondence for Generalized Vector Equilibrium Problems on Chain-Complete Posets [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1483-1491. |
[15] | Huang Zhenggang. A New Notion of Generalized Subgradients and Its Properties [J]. Acta mathematica scientia,Series A, 2015, 35(5): 927-935. |
|