Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (4): 1089-1102.
Previous Articles Next Articles
Received:
2021-08-31
Online:
2022-08-26
Published:
2022-08-08
Contact:
Chunlei He
E-mail:hcl026@126.com
Supported by:
CLC Number:
Chunlei He,Zihui Liu. Symmetries and Global Solutions for a Class of Hyperbolic Mean Curvature Flow[J].Acta mathematica scientia,Series A, 2022, 42(4): 1089-1102.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Begley T , Moore K . On short time existence of Lagrangian mean curvature flow. Math Ann, 2017, 367: 1473- 1515
doi: 10.1007/s00208-016-1420-3 |
2 |
Bressan A . Vanishing viscosity solutions of nonlinear hyperbolic systems. Annals of Math, 2005, 161: 223- 342
doi: 10.4007/annals.2005.161.223 |
3 |
Chau A , Chen J Y , He W Y . Lagrangian mean curvature flow for entire Lipschitz graphs. Calc Var, 2012, 44: 199- 220
doi: 10.1007/s00526-011-0431-x |
4 |
Chau A , Chen J Y , Yuan Y . Lagrangian mean curvature flow for entire Lipschitz graphs Ⅱ. Math Ann, 2013, 357: 165- 183
doi: 10.1007/s00208-013-0897-2 |
5 |
Chen J Y , Pang C . Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs. C R Acad Sci Paris Ser I, 2009, 347: 1031- 1034
doi: 10.1016/j.crma.2009.06.020 |
6 |
Chou K S , Kwong Y C . General initial data for a class of parabolic equations including the curve shortening problem. Discrete and Continuous Dynamical Systems, 2020, 40: 2963- 2986
doi: 10.3934/dcds.2020157 |
7 |
Duan S S , He C L , Huang S J . Hyperbolic mean curvature flow for Lagrangian graphs: One dimensional case. Journal of Geometry and Physics, 2020, 157: 103853
doi: 10.1016/j.geomphys.2020.103853 |
8 | Gage M , Hamilton R S . The heat equation shrinking convex plane curves. J Differential Geom, 1986, 23: 69- 96 |
9 |
Ginder E , Svadlenka K . Wave-type threshold dynamics and the hyperbolic mean curvature flow. Japan J Indust Appl Math, 2016, 33: 501- 523
doi: 10.1007/s13160-016-0221-0 |
10 | Grayson M A . The heat equation shrinks embedded plane curves to round points. J Differential Geom, 1987, 26: 285- 314 |
11 |
He C L , Kong D X , Liu K F . Hyperbolic mean curvature flow. J Differential Equations, 2009, 246: 373- 390
doi: 10.1016/j.jde.2008.06.026 |
12 |
He C L , Huang S J , Xing X M . Self-similar solutions to the hyperbolic mean curvature flow. Acta Math Sci, 2017, 37: 657- 667
doi: 10.1016/S0252-9602(17)30028-0 |
13 | Huisken G . Flow by mean curvature of convex surfaces into spheres. J Differential Geom, 1984, 20: 237- 266 |
14 | Huisken G , Ilmanen T . The inverse mean curvature flow and the Riemannian Penrose inequality. J Differential Geom, 2001, 59: 353- 437 |
15 | Kong D X. Cauchy Problem for Quasilinear Hyperbolic Systems. Tokyo: The Mathematical Society of Japan, 2000 |
16 | Kong D X . Hyperbolic Geometric Flow//Proceedings of ICCM 2007. Beijing: Higher Education Press, 2007, 95- 110 |
17 |
Kong D X , Liu K F . Wave character of metrics and hyperbolic geometric flow. J Math Phys, 2007, 48: 103508
doi: 10.1063/1.2795839 |
18 | Kong D X , Liu K F , Wang Z G . Hyperbolic mean curvature flow: evolution of plane curves. Acta Math Sci, 2009, 29B: 493- 514 |
19 |
Kong D X , Liu K F , Wang Y Z . Life-span of classical solutions to hyperbolic geometric flow in two space variables with slow decay initial data. Comm Partial Differential Equations, 2011, 36: 162- 184
doi: 10.1080/03605302.2010.513409 |
20 |
Kong D X , Liu K F , Xu D L . The hyperbolic geometric flow on Riemann surfaces. Comm Partial Differential Equations, 2009, 34: 553- 580
doi: 10.1080/03605300902768933 |
21 |
Kong D X , Wang Z G . Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow. J Differential Equations, 2009, 247: 1694- 1719
doi: 10.1016/j.jde.2009.04.016 |
22 | Kusumasari V . Hyperbolic mean curvature flow with an obstacle. Sci Rep Kanazawa Univ, 2018, 62: 1- 22 |
23 |
LeFloch P G , Smoczyk K . The hyperbolic mean curvature flow. J Math Pures Appl, 2008, 90: 591- 614
doi: 10.1016/j.matpur.2008.09.006 |
24 | Li T T, Zhou Y. Nonlinear Wave Equations. Berlin: Springer, 2017 |
25 | Nguyen T A , Yuan Y . A priori estimates for Lagrangian mean curvature flows. International Mathematics Research Notices, 2011, 2011: 4376- 4383 |
26 | Olver P J. Applications of Lie Groups to Differential Equations. Berlin: Springer-Verlag, 1993 |
27 | Smoczyk K . Longtime existence of the Lagrangian mean curvature flow. Calculus of Variations, 2004, 20: 25- 46 |
28 | Smoczyk K , Wang M T . Mean curvature flows of Lagrangian submanifolds with convex potentials. J Differential Geometry, 2002, 62: 243- 257 |
29 |
Smoczyk K . Angle theorems for the Lagrangian mean curvature flow. Math Z, 2002, 240: 849- 883
doi: 10.1007/s002090100402 |
30 | Xu C. Symmetries of geometric fows. 2010, ArXiv: 1001. 1394 |
31 |
Yau S T . Review of geometry and analysis. Asian J Math, 2000, 4: 235- 278
doi: 10.4310/AJM.2000.v4.n1.a16 |
32 | Yuan Y. Special Lagrangian Equations//Chen J, Lu P, Lu Z, Zhang Z. Geometric Analysis. Boston: Birkhauser, 2020, 521-536 |
33 |
Yuan Y . A Bernstein problem for special Lagrangian equations. Invent Math, 2002, 150: 117- 125
doi: 10.1007/s00222-002-0232-0 |
34 | Zhu X P. Lectures on Mean Curvature flows. Providence, RI: Amer Math Soc, 2002 |
|