Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (4): 1173-1185.
Previous Articles Next Articles
Jie Cao1(),Lan Huang2(
),Keqin Su1,*(
)
Received:
2021-10-26
Online:
2022-08-26
Published:
2022-08-08
Contact:
Keqin Su
E-mail:caojie23@hotmail.com;huanglan82@hotmail.com;keqinsu@hotmail.com
Supported by:
CLC Number:
Jie Cao,Lan Huang,Keqin Su. The Convergence of Pullback Attractors for Navier-Stokes Equations with Weak Damping[J].Acta mathematica scientia,Series A, 2022, 42(4): 1173-1185.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Amick C . Existence of solutions to the nonhomogeneous steady Navier-Stokes equations. Indiana Univ Math J, 1984, 3 (6): 431- 461 |
2 | Babin A V, Vishik M I. Attractors of Evolution Equations. North-Holland: Amsterdam, 1992 |
3 |
Cheskidov A , Foias C . On global attractors of the 3D Navier-Stokes equations. J Differential Equations, 2006, 231: 714- 754
doi: 10.1016/j.jde.2006.08.021 |
4 | Caraballo T , Langa J A . On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dyn Contin Discrete Impuls Syst, 2003, 10: 491- 513 |
5 |
Caraballo T , Langa J A , Robinson J C . Upper semicontinuity of attractors for small random perturbations of dynamical systems. Commun Partial Diff Eqns, 1998, 23: 1557- 1581
doi: 10.1080/03605309808821394 |
6 |
Carvalho A N , Langa J A , Robinson J C . On the continuity of pullback attractors for evolution processes. Nonlinear Anal, 2009, 71: 1812- 1824
doi: 10.1016/j.na.2009.01.016 |
7 | Chepyzhov V V , Pata V , Vishik M I . Averaging of 2D Navier-Stokes equations with singularly oscillating forces. Nonlinearity, 2009, 22 (22): 351- 370 |
8 |
Chepyzhov V V , Titi V V , Vishik E S . On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier-Stokes system. Discrete Contin Dyn Syst, 2007, 17: 481- 500
doi: 10.3934/dcds.2007.17.481 |
9 | Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, Rhode Island: American Mathematical Society, 2002 |
10 |
Erban R . On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow. Math Meth Appl Sci, 2003, 26: 489- 517
doi: 10.1002/mma.362 |
11 |
Flandoli F , Schmalfuß B . Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force. J Dyn Diff Equ, 1999, 11 (2): 355- 398
doi: 10.1023/A:1021937715194 |
12 | Hale J K. Asymptotic Behavior of Dissipative Systems. Providence, Rhode Island: American Mathematical Society, 1991 |
13 | Ladyzhenskaya O A. The Mathematical Theorem of Viscous Incompressible Flow. New York: Gordon and Breach, 1969 |
14 | Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997 |
15 |
Vishik M I , Chepyzhov V V . Trajectory and global attractors of three-dimensional Navier-Stokes systems. Math Notes, 2002, 71: 177- 193
doi: 10.1023/A:1014190629738 |
16 | Wang B X . Upper semicontinuity of random attractors for non-compact random dynamical systems. Electron J Diff Equ, 2009, 2009: 1- 18 |
17 |
Wang Y . On the upper semicontinuity of pullback attractors with applications to plate equations. Commun Pure Appl Anal, 2010, 9: 1653- 1673
doi: 10.3934/cpaa.2010.9.1653 |
18 |
Wang Y , Zhong C . Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete Contin Dyn Syst, 2013, 33 (7): 3189- 3209
doi: 10.3934/dcds.2013.33.3189 |
19 | Yang X , Li L , Lu Y . Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation. Appl Math Compu, 2018, 334: 11- 29 |
20 | Yang X , Feng B , Thales Maier de Souza , Wang T . Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete Contin Dyn Syst B, 2019, 24 (1): 363- 389 |
21 |
Zelati M C , Gal C G . Singular limits of voigt models in fluid dynamics. J Math Fluid Mech, 2015, 17: 233- 259
doi: 10.1007/s00021-015-0201-1 |
|