the NSFC(11961052);the NSF of Inner Mongolia(2022MS01005);the NSF of Inner Mongolia(2021LHMS01004);the Basic Science Research Fund in the University Directly under the Inner Mongolia Autonomous Region(JY220083);the Basic Science Research Fund in the University Directly under the Inner Mongolia Autonomous Region(JY20220151);Tenching Reform of Postgraduate Education in Inner Mongolia University of Technology(YJG2020027)
Xiaolin Sun,Hua Wang. Solvability of Several Kinds of Ggeneralized Sylvester Operator Equations[J].Acta mathematica scientia,Series A, 2022, 42(6): 1640-1652.
Sylvester J . Sur l'équation en matrices px-xq. Comptes Rendus Mathematique, 1884, 99, 67- 71
2
Roth W E . The equation AX-YB=C and AX-XB=C in matrices. Proceedings of the American Mathematical Society, 1952, 3 (3): 392- 396
3
Wimmer H K . The matrix equation X - AXB = C and analogue of Roth's theorem. Linear Algebra and its Applications, 1988, 109, 145- 147
doi: 10.1016/0024-3795(88)90204-2
4
Lee S G , Vu Q P . Simultaneous solutions of matrix equations and simultaneous equivalence of matrices. Linear Algebra and its Applications, 2012, 437 (9): 2325- 2339
doi: 10.1016/j.laa.2012.06.004
5
Dmytryshyn A , Kaöm B . Coupled Sylvester-type matrix equations and block diagonalization. SIAM Journal on Matrix Analysis and Applications, 2015, 36 (2): 580- 593
doi: 10.1137/151005907
6
Eric C . The solution of the matrix equations AXB-CXD=E and (YA-DZ, YC-BZ)=(E, F). Linear Algebra and its Applications, 1987, 93 (87): 93- 105
7
Baksalary J K , Kala R . The matrix equation AXB+CYD=E. Linear Algebra and its Applications, 1980, 30 (1): 141- 147
8
Rehman A , Wang Q W , Ali I , et al. A constraint system of generalized Sylvester quaternion matrix equations. Advances in Applied Clifford Algebras, 2017, 27 (11): 3183- 3196
9
He Z H , Wang Q W , Zhang Y . A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica, 2018, 87 (7): 25- 31