Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1768-1781.
Previous Articles Next Articles
Chen Xingfa, Zhong Penghong
Received:
2021-06-23
Revised:
2022-08-06
Online:
2022-12-26
Published:
2022-12-16
Supported by:
CLC Number:
Chen Xingfa, Zhong Penghong. The Ill-Posedness of the Solution for the General Power Derivative Schrödinger Equation in Hs[J].Acta mathematica scientia,Series A, 2022, 42(6): 1768-1781.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Biagioni H A, Linares F. Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations. Trans Amer Math Soc, 2001, 353(9):3649-3659 [2] Clarkson P A, Tuszynski J A. Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems near criticality. J Phys A:Math Gen, 1990, 23:4269-4288 [3] Colliander J E, Keel M, Staffilani G, et al. A refined global well-posedness result for Schrödinger equations with derivatives. SIAM J Math Anal, 2002, 34:64-86 [4] Colliander J E, Keel M, Staffilani G, et al. Global well-posedness result for Schrödinger equations with derivative. SIAM J Math Anal, 2001, 33(2):649-669 [5] Dixon J M, Tuszynski J A. Coherent structures in strongly interacting many-bodysystems:II. Classical solutions and quantum fluctuations. J Phys A:Math Gen, 1989, 22:4895-4920 [6] Grünrock A. Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS. Int Math Res Not, 2005, 41:2525-2558 [7] Grünrock A, Herr S. Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data. SIAM J Math Anal, 2008, 39(6):1890-1920 [8] Guo B L, Tan S B. On smooth solution to the initial value problem for the mixed nonlinear Schrödinger equations. Proc Roy Soc Edinburgh, 1991, 119:31-45 [9] Guo Z H, Hayashi N, Lin Y Q, Naumkin P. Modified scattering operator for the derivative nonlinear Schrödinger equation. SIAM J Math Anal, 2013, 45(6):3854-3871 [10] Hao C C. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Comm Pure and Applied Analysis, 2007, 6(4):997-1021 [11] Hayashi M, Ozawa T. Well-posedness for a generalized derivative nonlinear Schrödinger equation. J Differential Equations, 2016, 261(10):5424-5445 [12] Hayashi N, Ozawa T. On the derivative nonlinear Schrödinger equation. Physica D, 1992, 55:14-36 [13] Hayashi N, Ozawa T. Finite energy solution of nonlinear Schrödinger equations of derivative type. SIAM J Math Anal, 1994, 25:1488-1503 [14] Herr S. On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition. Int Math Res Not, 2006, 33:ID 96763 [15] Liu J Q, Perry P, Sulem C. Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering. Comm Part Diff Eqs, 2016, 41(11):1692-1760 [16] Liu X, Simpson G, Sulem C. Stability of solitary waves for a generalized derivative nonlinear Schrödinger Equation. J Nonlinear Sci, 2013, 23(4):557-583 [17] Miao C X, Wu Y F, Xu G X. Global well-posedness for Schrödinger equation with derivative in $H^{frac{1}{2}(\R)$. J Diff Eq, 2011, 251:2164-2195 [18] Mio K, Ogino T, Minami K, Takeda S. Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J Phys Soc Japan, 1976, 41:265-271 [19] Mosincat R. Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in H1/2($\mathbb{R}$). J Differential Equations, 2017, 263(8):4658-4722 [20] Mosincat R, Oh T. A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle. C R Math Acad Sci Paris, 2015, 353(9):837-841 [21] Pelinovsky D, Saalmann A, Shimabukuro D E. The derivative NLS equation:global existence with solitons. Dynamics of PDEs, 2017, 14(3):217-294 [22] Santos G N. Existence and uniqueness of solutions for a generalized nonlinear derivative Schrödinger equation. J Diff Eqs, 2015, 259:2030-2060 [23] Takaoka H. Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity. Adv Diff Eq, 1999, 4:561-680 [24] Takaoka H. A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below $H^{frac{1}{2}}$. J Diff Eqns, 2016, 260(1):818-859 [25] Tuszynski J A, Dixon J M. Coherent structures in strongly interacting many-bodysystems:I. Derivationofdy-namics. J Phys A:Math Gen, 1989, 22:4877-4894 [26] Wang B X. Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data. J Funct Anal, 2013, 265(12):3009-3052 [27] Wu Y F. Global well-posedness of the derivative nonlinear Schrödinger equations in energy space. Analysis PDE, 2013, 6(8):1989-2002 |
[1] | Liu Anqi,Yu Ting,Xiang Changlin. Research on the Regularity of a Class of Biharmonic Map-Type Partial Differential Equation Systems [J]. Acta mathematica scientia,Series A, 2025, 45(2): 408-417. |
[2] | Li Xin, Hao Wenjuan, Liu Yang. The Asymptotic Behavior of the Generalized Brinkman-Forchheimer Equation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 74-91. |
[3] | Meng Zhiying, Yin Zhaoyang. Global Gevrey Regularity and Analyticity of a Weakly Dissipative Camassa-Holm Equation [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1537-1549. |
[4] | Li Changhao, Yuan Baoquan. Global Regularity for the 2D Micropolar Rayleigh-Bénard Convection System with Velocity Zero Dissipation and Temperature Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2024, 44(4): 914-924. |
[5] | Wang Xuan, Yuan Haiyan. Attractors for the Nonclassical Diffusion Equation with Time-Dependent Memory Kernel [J]. Acta mathematica scientia,Series A, 2024, 44(2): 429-452. |
[6] | Chen Ruijuan, He YingXi, Xiao Meixia. Regularity of the Solutions to the Nordström-Vlasov System [J]. Acta mathematica scientia,Series A, 2023, 43(3): 743-753. |
[7] | Song Yuying, Fan Hongxia. Existence and Regularity of Solutions for a Class of Neutral Stochastic Evolution Equations [J]. Acta mathematica scientia,Series A, 2023, 43(1): 238-248. |
[8] | Baoying Du,Jinxing Liu. Global Regularity for the Incompressible 3D Hall-Magnetohydrodynamics with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1754-1767. |
[9] | Wending Xu,Ting Zhong. The Convergence of Nonsmooth Newton's Method [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1537-1550. |
[10] | Junfeng Liu,Lei Mao,Zhi Wang. Moment Bounds for the Fractional Stochastic Heat Equation with Spatially Inhomogeneous White Noise [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1186-1208. |
[11] | Qingchun Meng,Lei Zhang. Numerical Solution of the Three-Dimensional Inverse Heat Conduction Problems [J]. Acta mathematica scientia,Series A, 2022, 42(1): 187-200. |
[12] | Jing Yang,Xuemei Deng,Yanping Zhou. Global Regularity for the MHD-Boussinesq System with Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1805-1815. |
[13] | Wenjuan Wang,Mingxiang Xue. Global Regularity of the 2D Tropical Climate Model with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1734-1749. |
[14] | Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404. |
[15] | Xinyi Feng,Xiangkai Sun. Characterizations of Farkas Lemmas for a Class of Fractional Optimization with DC Functions [J]. Acta mathematica scientia,Series A, 2021, 41(3): 827-836. |
|