Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1861-1872.
Previous Articles Next Articles
Yanjun Zhao1,*(),Xiaohui Sun1,Li Su1,Wenxuan Li2
Received:
2021-12-03
Online:
2022-12-26
Published:
2022-12-16
Contact:
Yanjun Zhao
E-mail:zhaoyanjun@jisu.edu.cn
Supported by:
CLC Number:
Yanjun Zhao,Xiaohui Sun,Li Su,Wenxuan Li. Qualitative Analysis of Stochastic SIRS Epidemic Model with Logistic Growth and Beddington-DeAngelis Incidence Rate[J].Acta mathematica scientia,Series A, 2022, 42(6): 1861-1872.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Kermack W O , McKendrick A G . Contributions to the mathematical theory of epidemics. Part Ⅰ. Proc R Soc Lond, 1927, 115, 701- 721 |
2 |
Zhu Q X . pth moment exponential stability of impulsive stochastic functional differential equations with markovian switching. J Franklin Inst, 2014, 351, 3965- 3986
doi: 10.1016/j.jfranklin.2014.04.001 |
3 |
Cai Y L , Kang Y , Banerjee M , Wang W M . A stochastic SIRS epidemic model with infectious force under intervention strategies. J Differ Equ, 2015, 259, 7463- 7502
doi: 10.1016/j.jde.2015.08.024 |
4 |
Zhu Q X , Song S Y , Tang T R . Mean square exponential stability of stochastic nonlinear delay systems. Int J Control, 2017, 90, 2384- 2393
doi: 10.1080/00207179.2016.1249030 |
5 |
Pitchaimani M , Rajasekar S P . Global analysis of stochastic SIR model with variable diffusion rates. Tamkang J Math, 2018, 49, 155- 182
doi: 10.5556/j.tkjm.49.2018.2586 |
6 |
Zhu Q X , Song S Y , Shi P . Effect of noise on the solutions of non-linear delay systems. IET Control Theory Appl, 2018, 12, 1822- 1829
doi: 10.1049/iet-cta.2017.0963 |
7 |
Wang B , Zhu Q X . Stability analysis of semi-Markov switched stochastic systems. Automatica, 2018, 94, 72- 80
doi: 10.1016/j.automatica.2018.04.016 |
8 |
Pitchaimani M , Rajasekar S P , Zhu Q X . Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function. Physica A, 2019, 535, 122300
doi: 10.1016/j.physa.2019.122300 |
9 |
Zhu Q X . Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. IEEE Trans Automat Contr, 2019, 64, 3764- 3771
doi: 10.1109/TAC.2018.2882067 |
10 |
Hu W , Zhu Q X , Hamid R K . Some improved razumikhin stability criteria for impulsive stochastic delay differential systems. IEEE Trans Automat Contr, 2019, 64, 5207- 5213
doi: 10.1109/TAC.2019.2911182 |
11 |
Rajasekar S P , Pitchaimani M . Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses. Chaos Solitons Fractals, 2019, 118, 207- 221
doi: 10.1016/j.chaos.2018.11.023 |
12 | Cai Y L , Kang Y , Wang W M . A stochastic SIRS epidemic model with nonlinear incidence rate. Appl Math Comput, 2017, 305, 221- 240 |
13 |
Liu Q , Jiang D Q , Shi N Z , et al. Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence. Physica A, 2017, 469, 510- 517
doi: 10.1016/j.physa.2016.11.077 |
14 | Capasso V , Serio G . A generalization of the Kermack-McKendrick deterministic epidemic model. Math Biosci, 1978, 42 (1/2): 43- 61 |
15 |
Xu R , Ma Z E . Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Analysis: Real World Applications, 2009, 10 (5): 3175- 3189
doi: 10.1016/j.nonrwa.2008.10.013 |
16 |
Xu R , Zhang S H , Zhang F Q . Global dynamics of a delayed SEIS infectious disease model with logistic growth and saturation incidence. Math Method Appl Sci, 2016, 39 (12): 3294- 3308
doi: 10.1002/mma.3774 |
[1] | Zeng Xiaping, Lu Wenwen, Pang Guoping, Liang Zhiqing. Single Population Dynamics Model of Fish with Seasonal Switching and Impulsive Perturbations [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1206-1216. |
[2] | Zhang Wenwen, Liu Zhijun, Wang Qinglong. Exponential Extinction, Stationary Distribution and Probability Density Function of A Stochastic Predator-Prey Model with Ornstein-Uhlenbeck Process [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1368-1379. |
[3] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[4] | Yin Ruixia, Wang Zedong, Zhang Long. A Periodic Stage Structure Single-Population Model with Infinite Delay and Feedback Control [J]. Acta mathematica scientia,Series A, 2024, 44(4): 994-1011. |
[5] | Li Dan,Wei Fengying,Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1595-1606. |
[6] | Changyou Wang,Nan Li,Tao Jiang,Qiang Yang. On a Nonlinear Non-Autonomous Ratio-Dependent Food Chain Model with Delays and Feedback Controls [J]. Acta mathematica scientia,Series A, 2022, 42(1): 245-268. |
[7] | Liya Liu,Daqing Jiang. Global Dynamics of a Stochastic Chemostat Model with General Response Function and Wall Growth [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1912-1924. |
[8] | Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221-233. |
[9] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[10] | Li Zhouhong, Zhang Fengshuo, Cao Jinde, Alsaedi Ahmed, Alsaadi Fuad E. Almost Periodic Solution for a Non-Autonomous Two Species Competitive System with Feedback Controls on Time Scales [J]. Acta mathematica scientia,Series A, 2017, 37(4): 730-750. |
[11] | Zhou Sen, Yang Zuodong. Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source [J]. Acta mathematica scientia,Series A, 2016, 36(3): 531-542. |
[12] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[13] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[14] | LING Lin, LIU Su-Yu, JIANG Gui-Rong. Bifurcation Analysis of a SIRS Epidemic Model with Saturating Contact Rate and Vertical Transmission [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1415-1425. |
[15] | JIANG Yu, MEI Li-Quan, SONG Xin-Yu, TIAN Wei-Jun, DING Xue-Mei. Analysis of an Impulsive Epidemic Model with Time Delays and Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2012, 32(4): 670-684. |
|