| [1] | Acerbi E, Fusco N. A regularity theorem for minimizers of quasiconvex variational integrals. Arch Ration Mech Anal, 1987, 99: 261-281 | | [2] | Acerbi E, Mingione G, Seregin G A. Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann Inst H Poincare Anal Non Lineaire, 2004, 21: 25-60 | | [3] | Almgren F J. Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Annals of Math, 1968, 87: 321-391 | | [4] | Chen S, Tan Z. The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition. J Math Anal Appl, 2007, 335: 20-42 | | [5] | Duzaar F, Grotowski J F. Partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation. Manu Mat, 2000, 103: 267-298 | | [6] | Duzaar F, Mingione G. Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann Inst H Poincare Anal Non Lineaire, 2005, 22: 705-751 | | [7] | 徐明月, 赵才地,Tomas C. 三维不可压Navier-Stokes方程组轨道统计解的退化正则性. 数学物理学报, 2021, 41A(2): 336-345 | | [7] | Xu M Y, Zhao C D, Tomas C. Degenerate regularity of trajectory statistical solutions for the 3D incompressible Navier-Stokes equations. Acta Math Sci, 2021, 41A(2): 336-345 | | [8] | 张雅楠, 闫硕, 佟玉霞. 自然增长条件下的非齐次A -调和方程弱解的梯度估计. 数学物理学报, 2020, 40A(2): 379-395 | | [8] | Zhang Y N, Yan S, Tong Y X. Gradient estimates for weak solutions to non-homogeneous -harmonic equations under natural growth. Acta Math Sci, 2020, 40A(2): 379-395 | | [9] | 邹维林, 任远春, 肖美萍. 系数的$L^1$相互关系对非线性退化椭圆方程解的正则性的影响. 数学物理学报, 2021, 41A(5): 1405-1415 | | [9] | Zou W L, Ren Y C, Xiao M P. Regularizing effect of $L^1$ interplay between coefficients in nonlinear degenerate elliptic equaitons. Acta Math Sci, 2021, 41A(5): 1405-1415 | | [10] | Porretta A. Weak solutions to Fokker equations and mean field games. Arch Ration Mech Anal, 2015, 216(1): 1-62 | | [11] | Bocccardo L. Quelques problemes de Dirichlet avec donnees dans de grands espaces de Sobolev. C R Acad Sci Paris Ser I Math, 1997, 325(12): 1267-1272 | | [12] | Carozza M, Moscariello G, Passarelli D N A. Nonlinear equations with growth coefficients in BMO. Houston J Math, 2002, 28(4): 917-929 | | [13] | Fiorenza A, Sbordone C. Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$. Studia Math, 1998, 127: 223-231 | | [14] | Boccardo L. Some developments on Dirichlet problems with discontinuous coefficients. Boll Unione Mat Ital, 2009, 92: 285-297 | | [15] | Moscariello G. Existence and uniqueness for elliptic equations with lower-order terms. Adv Calc Var, 2011, 4(4): 421-444 | | [16] | Zecca G. Existence and uniqueness for nonlinear elliptic equations with lower-order terms. Nonlinear Anal, 2012, 75(2): 899-912 | | [17] | Greco L, Moscariello G, Zecca G. Regularity for solutions to nonlinear elliptic equations. Differential Integral Equations, 2013, 26(9/10): 1105-1113 | | [18] | Radice T, Zecca G. Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients. Ric Mat, 2014, 63(2): 355-367 | | [19] | Greco L, Moscariello G, Zecca G. Very weak solutions to elliptic equations with singular convection term. J Math Anal Appl, 2018, 457(2): 1376-1387 | | [20] | Iwaniec T, Migliaccio L, Nania L, et al. Integrability and removability results for quasiregular mappings in high dimensions. Math Scand, 1994, 75: 263-279 | | [21] | Campanato S. Proprieta di Holderianita di alcune classi di funzioni. Ann Sc Norm Sup Pisa Ser III, 1963, 17: 175-188 | | [22] | Campanato S. Equazioni ellittiche del $II^e$ ordine e spazi $L^{2,\lambda}$. Ann Mat Appl, 1965, 69: 321-381 | | [23] | Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann Math Stud. Princeton: Princeton Univ Press, 1983, 105 | | [24] | Greco L, Iwaniec T, Sbordone C. Inverting the $p$-harmonic operator. Manuscripta Math, 1997, 92(2): 249-258 | | [25] | O'Neil R. Convolution operators and $L(p, q)$ spaces. Duke Math J, 1963, 30: 129-142 |
|