Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 743-753.
Previous Articles Next Articles
Chen Ruijuan1(),He YingXi2(
),Xiao Meixia1,*(
)
Received:
2022-01-26
Revised:
2022-10-28
Online:
2023-06-26
Published:
2023-06-01
Contact:
Meixia Xiao
E-mail:ruijuanchen@hust.edu.cn;yh20602@essex.ac.uk;xiao_meixia@163.com
Supported by:
CLC Number:
Chen Ruijuan, He YingXi, Xiao Meixia. Regularity of the Solutions to the Nordström-Vlasov System[J].Acta mathematica scientia,Series A, 2023, 43(3): 743-753.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Glassey R T. The Cauchy Problem in Kinetic Theory. Philadelphia: SIAM, 1996 |
[2] | Rein G. Collisionless Kinetic Equation from Astrophysics the Vlasov-Poisson System//Dafermos C M, Feireisl E, eds. Handbook of Differential Equations: Evolutionary Equations Elsevier, 2007, 3: 383-476 |
[3] |
Andréasson H. The Einstein-Vlasov system/kinetic theory. Living Rev Relativ, 2011, 14: 1-55
doi: 10.12942/lrr-2011-1 |
[4] |
Calogero S. Spherically symmetric steady states of galactic dynamics in scalar gravity. Class Quantum Gravity, 2003, 20: 1729-1741
doi: 10.1088/0264-9381/20/9/310 |
[5] |
Nordstrom G. Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips. Annalen der Physik, 1913, 347(13): 533-554
doi: 10.1002/(ISSN)1521-3889 |
[6] |
Calogero S, Rein G. On classical solution of the Nordström-Vlasov system. Comm Partial Differential Equations, 2003, 28: 1863-1885
doi: 10.1081/PDE-120025488 |
[7] |
Glassey R T, Strauss W A. Singularity formation in a collisionless plasma could occur only at high velocities. Arch Rational Mech Anal, 1986, 92: 59-90
doi: 10.1007/BF00250732 |
[8] | Pallard C. On global smooth solutions to the 3D Vlasov-Nordström system. Ann Inst Henri Poincare Analyse Lineaire, 2006, 23: 85-96 |
[9] |
Calogero S. Global classical solutions to the 3D Nordström-Vlasov system. Comm Math Phys, 2006, 266: 343-353
doi: 10.1007/s00220-006-0029-x |
[10] | Fajman D, Joudioux J, Smulevici J. Sharp asymptotics for small data solutions of the Vlasov-Nordström System in three dimensions. preprint, arxiv:1704.05353 [math.AP], https://arxiv.org/abs/1704.05353v1 |
[11] |
Andréasson H, Calogero S, Rein G. Global classical solutions to the spherically symmetric Nordström-Vlasov system. Math Proc Camb Phil Soc, 2005, 138(3): 533-539
doi: 10.1017/S0305004105008467 |
[12] |
Lee Y. Global existence of classical solutions of the Nordström-Vlasov system in two space dimensions. Comm Partial Differential Equations, 2005, 30: 663-687
doi: 10.1081/PDE-200059271 |
[13] |
Calogero S, Rein G. Global weak solutions to the Nordström-Vlasov system. J Differential Equations, 2004, 204: 323-338
doi: 10.1016/j.jde.2004.02.011 |
[14] | Bostan M. Stationary solutions for the one-dimensional Nordström-Vlasov system. Asymptotic Anal, 2009, 64: 155-183 |
[15] |
Calogero S, Lee Y. The non-relativistic limit of the Nordström-Vlasov system. Comm Math Sci, 2004, 2: 19-34
doi: 10.4310/CMS.2004.v2.n1.a2 |
[16] | Schaeffer J. The classical limit of the relativistic Vlasov-Maxwell system. Comm Math Phys, 1986, 104: 409-421 |
[17] |
Bostan M. Boundary value problems for the stationary Nordström-Vlasov system. J Korean Math Soc, 2010, 47: 743-766
doi: 10.4134/JKMS.2010.47.4.743 |
[18] |
Calogero S, Calvo J, Sánchez Ó, Soler J. Virial inequalities for steady states in relativistic galactic dynamics. Nonlinearity, 2010, 23: 1851-1871
doi: 10.1088/0951-7715/23/8/004 |
[19] | Shatah J, Struwe M. Geometric Wave Equations. Courant Lectures Notes in Mathematics, Vol 2. Providence: American Mathematical Society, 1998 |
[20] | Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. New Jersey: Princeton University Press, 1993 |
[21] | Lions J L, Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Vol 1. Heidelberg: Springer-Verlag, 1972 |
[22] | Bergh J, Löfström J. Interpolation Spaces: An Introduction. Heidelberg: Springer-Verlag, 1976 |
[1] | Liu Anqi,Yu Ting,Xiang Changlin. Research on the Regularity of a Class of Biharmonic Map-Type Partial Differential Equation Systems [J]. Acta mathematica scientia,Series A, 2025, 45(2): 408-417. |
[2] | Li Xin, Hao Wenjuan, Liu Yang. The Asymptotic Behavior of the Generalized Brinkman-Forchheimer Equation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 74-91. |
[3] | Meng Zhiying, Yin Zhaoyang. Global Gevrey Regularity and Analyticity of a Weakly Dissipative Camassa-Holm Equation [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1537-1549. |
[4] | Li Changhao, Yuan Baoquan. Global Regularity for the 2D Micropolar Rayleigh-Bénard Convection System with Velocity Zero Dissipation and Temperature Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2024, 44(4): 914-924. |
[5] | Wang Xuan, Yuan Haiyan. Attractors for the Nonclassical Diffusion Equation with Time-Dependent Memory Kernel [J]. Acta mathematica scientia,Series A, 2024, 44(2): 429-452. |
[6] | Song Yuying, Fan Hongxia. Existence and Regularity of Solutions for a Class of Neutral Stochastic Evolution Equations [J]. Acta mathematica scientia,Series A, 2023, 43(1): 238-248. |
[7] | Baoying Du,Jinxing Liu. Global Regularity for the Incompressible 3D Hall-Magnetohydrodynamics with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1754-1767. |
[8] | Chen Xingfa, Zhong Penghong. The Ill-Posedness of the Solution for the General Power Derivative Schrödinger Equation in Hs [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1768-1781. |
[9] | Wending Xu,Ting Zhong. The Convergence of Nonsmooth Newton's Method [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1537-1550. |
[10] | Junfeng Liu,Lei Mao,Zhi Wang. Moment Bounds for the Fractional Stochastic Heat Equation with Spatially Inhomogeneous White Noise [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1186-1208. |
[11] | Jing Yang,Xuemei Deng,Yanping Zhou. Global Regularity for the MHD-Boussinesq System with Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1805-1815. |
[12] | Wenjuan Wang,Mingxiang Xue. Global Regularity of the 2D Tropical Climate Model with Partial Dissipation [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1734-1749. |
[13] | Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404. |
[14] | Xinyi Feng,Xiangkai Sun. Characterizations of Farkas Lemmas for a Class of Fractional Optimization with DC Functions [J]. Acta mathematica scientia,Series A, 2021, 41(3): 827-836. |
[15] | Penghong Zhong,Xingfa Chen. Global Smoothness of the Plane Wave Solutions for Landau-Lifshitz Equation [J]. Acta mathematica scientia,Series A, 2021, 41(3): 729-739. |
|