| [1] | Taflove A, Hagness S C. Computational Electrodynamics:the Finite-Difference Time-Domain Method. Boston: Artech House, 2000 |
| [2] | Cohen G C. Higher-Order Numerical Methods for Transient Wave Equations, Scientific Computation. Berlin: Springer-Verlag, 2002 |
| [3] | Bondeson A, Rylander T, Ingelstr?m P. Computational Electromagnetics. New York: Springer, 2005 |
| [4] | Yee K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas & Propagation, 1966, 14(3): 302-307 |
| [5] | Slodi?ka M. Nonlinear diffusion in type-II superconductors. J Comput Appl Math, 2008, 215(2): 568-576 |
| [6] | Gruner G, Zawadowski A, Chaikin P. Nonlinear conductivity and noise due to charge-density-wave depinning in nbse3. Physical Review Letters, 1981, 46(7): 511-515 |
| [7] | Yin H M. On a singular limit problem for nonlinear Maxwell's equations. J Differential Equations, 1999, 156(2): 355-375 |
| [8] | Jochmann F. Asymptotic behavior of the electromagnetic field for a micromagnetism equation without exchange energy. SIAM J Math Anal, 2005, 37(1): 276-290 |
| [9] | Yin H M. Existence and regularity of a weak solution to Maxwell's equations with a thermal effect. Math Methods Appl Sci, 2006, 29(10): 1199-1213 |
| [10] | Ferreira M V, Buriol C. Orthogonal decomposition and asymptotic behavior for nonlinear Maxwell's equations. J Math Anal Appl, 2015, 426(1): 392-405 |
| [11] | Durand S, Slodi?ka M. Convergence of the mixed finite element method for Maxwell's equations with nonlinear conductivity. Math Methods Appl Sci, 2012, 35(13): 1489-1504 |
| [12] | Yao C, Lin Y, Wang C, Kou Y. A third order linearized BDF scheme for Maxwell's equations with nonlinear conductivity using finite element method. Int J Numer Anal Model, 2017, 14(4/5): 511-531 |
| [13] | Bokil V A, Cheng Y, Jiang Y, et al. High spatial order energy stable FDTD methods for Maxwell's equations in nonlinear optical media in one dimension. J Sci Comput, 2018, 77(1): 330-371 |
| [14] | Huang Y, Li J, He B. A time-domain finite element scheme and its analysis for nonlinear Maxwell's equations in Kerr media. J Comput Phys, 2021, 435: 110259 |
| [15] | Hesthaven J. High-order accurate methods in time-domain computational electromagnetics: A review. Advances in Imaging and Electron Physics, 2003, 127: 59-123 |
| [16] | Yefet A, Petropoulos P G. A staggered fourth-order accurate explicit finite differences scheme for the time-domain Maxwell's equations. J Comput Phys, 2001, 168(2): 286-315 |
| [17] | Xie Z, Chan C H, Zhang B. An explicit fourth-order staggered finite-difference time-domain method for Maxwell's equations. J Comput Appl Math, 2002, 147(1): 75-98 |
| [18] | Zhao S, Wei G W. High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces. J Comput Phys, 2004, 200(1): 60-103 |
| [19] | Chen Z, Du Q, Zou J. Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J Numer Anal, 2000, 37(5): 1542-1570 |
| [20] | Cai W, Deng S. An upwinding embedded boundary method for Maxwell's equations in media with material interfaces: 2D case. J Comput Phys, 2003, 190(1): 159-183 |
| [21] | Deng S. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces. Comput Phys Comm, 2008, 179(11): 791-800 |
| [22] | Nguyen D D, Zhao S. Time-domain matched interface and boundary (MIB) modeling of Debye dispersive media with curved interfaces. J Comput Phys, 2014, 278: 298-325 |
| [23] | Zhang Y, Nguyen D D, Du K, et al. Time-domain numerical solutions of Maxwell interface problems with discontinuous electromagnetic waves. Adv Appl Math Mech, 2016, 8(3): 353-385 |
| [24] | Li J, Shi C, Shu C W. Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials. Comput Math Appl, 2017, 73(8): 1760-1780 |
| [25] | Yan S, Jin J M. A continuity-preserving and divergence-cleaning algorithm based on purely and damped hyperbolic Maxwell equations in inhomogeneous media. J Comput Phys, 2017, 334: 392-418 |
| [26] | Camargo L, López-Rodríguez B, Osorio M, Solano M. An HDG method for Maxwell's equations in heterogeneous media. Comput Methods Appl Mech Engrg, 2020, 368: 113178 |
| [27] | Bernardi C, Maday Y. Spectral methods. Handbook of Numerical Analysis, 1997, 5: 209-485 |
| [28] | Guo B Y. Spectral Methods and Their Applications. New Jersey: World Scientific Publishing Co, 1998 |
| [29] | Guo B Y, Shen J. Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval. Numer Math, 2000, 86(4): 635-654 |
| [30] | Guo B Y. Some Developments in Spectral Methods for Nonlinear Partial Differential Equations in Unbounded Domains//Gu C H, Hu H S, Li T. Differential Geometry and Related Topics. Singapore: World Science, 2002: 68-90 |
| [31] | Shen J, Tang T. Spectral and High-order Methods with Applications. Mathematics Monograph Series. Beijing: Science Press, 2006 |
| [32] | Ma H. Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws. SIAM J Numer Anal, 1998, 35(3): 869-892 |
| [33] | Ma H. Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J Numer Anal, 1998, 35(3): 893-908 |
| [34] | Ma H, Sun W. Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation. SIAM J Numer Anal, 2001, 39(4): 1380-1394 |
| [35] | Ma H, Qin Y, Ou Q. Multidomain Legendre-Galerkin Chebyshev-collocation method for one-dimensional evolution equations with discontinuity. Appl Numer Math, 2017, 111: 246-259 |
| [36] | Chan T F, Kerkhoven T. Fourier methods with extended stability intervals for the Korteweg-de Vries equation. SIAM J Numer Anal, 1985, 22(3): 441-454 |
| [37] | Wu H, Ma H, Li H. Chebyshev-Legendre spectral method for solving the two-dimensional vorticity equations with homogeneous Dirichlet conditions. Numer Methods Partial Differential Equations, 2009, 25(3): 740-755 |
| [38] | Shen J, Tang T, Wang L L. Spectral Methods: Algorithms, Analysis and Applications. Heidelberg: Springer, 2011 |
| [39] | Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods: Fundamentals in Single Domains. Berlin: Springer-Verlag, 2006 |
| [40] | Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Berlin: Springer, 2007 |
| [41] | Niu C, Ma H, Liang D. Energy-conserved splitting multidomain Legendre-Tau spectral method for two dimensional Maxwell's equations. J Sci Comput, 2022, 90(2): 77 |