| [1] | Antonelli P, Carles R, Silva J D. Scattering for nonlinear Schr?dinger equation under partial harmonic confinement. Comm Math Phys, 2015, 334 (1): 367-396 |
| [2] | Bao W Z, Cai Y Y. Mathematics theory and numerical methods for Bose-Einstein condensation. Kinet Relat Models, 2013, 6(1): 1-135 |
| [3] | Bellazzini J, Boussaid N, Jeanjean L, Visciglia N. Existence and stability of standing waves for supercritical NLS with a partial confinement. Comm Math Phys, 2017, 353(1): 229-251 |
| [4] | Cao D M, Han P G. Inhomogeneous critical nonlinear Schr?dinger equations with a harmonic potential. J Math Phys, 2010, 51(4): 043505 |
| [5] | Cazenave T. Semilinear Schr?dinger Equations. Courant Lecture Notes in Mathematics vol. 10. Providence: American Mathematical Society, 2003 |
| [6] | Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose-Einstein condensation in trapped gases. Rev Modern Phys, 1999, 71(3): 463-512 |
| [7] | Feng B H. On the blow-up solutions for the nonlinear Schr?dinger equations with combined power-type nonlinearities. J Evol Equ, 2018, 18(1): 203-220 |
| [8] | Fukuizumi R, Ohta M. Stability of standing waves for nonlinear Schr?dinger equations with potentials. Differential Integral Equations, 2003, 16(1): 111-128 |
| [9] | Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schr?dinger equations. J Math Phys, 1977, 18(9): 1794-1797 |
| [10] | Gou T X. Existence and orbital stability of standing waves to nonlinear Schr?dinger system with partial confinement. J Math Phys, 2018, 59(7): 071508 |
| [11] | Hmidi T, Keraani S. Blowup theory for the critical nonlinear Schr?dinger equations revisited. Int Math Res Notices, 2005, 46: 2815-2828 |
| [12] | Jia H F, Li G B, Luo X. Stable standing waves for cubic nonlinear Schr?dinger systems with partial confinement. Discrete Contin Dyn Syst, 2020, 40(5): 2739-2766 |
| [13] | Kwong M K. Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in $\mathbf{R}^N$. Arch Ration Mech Anal, 1989, 105: 243-266 |
| [14] | Li X G, Zhang J. Limit behavior of blow-up solutions for critical nonlinear Schr?dinger equation with harmonic potential. Differential Integral Equations, 2006, 19(7): 761-771 |
| [15] | Liu Q, Zhou Y Q, Zhang J, Zhang W N. Sharp condition of global existence for nonlinear Schr?dinger equation with a harmonic potential. Applied Mathematics and Computation, 2006, 177(2): 482-487 |
| [16] | Liu Z X. On a class of inhomogeneous, energy-critical, focusing, nonlinear Schr?dinger equations. Acta Math Sci, 2013, 33B(6): 1522-1530 |
| [17] | Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schr?dinger equations with critical power. Duke Math J, 1993, 69(2): 427-454 |
| [18] | Merle F. Nonexistence of minimal blow-up solutions of equations i$u_t = -\Delta u-k(x)|u|^{\frac{4}{N}}u$ in $\mathbf{R}^N$. Ann Inst Henri Poincare, 1996, 64(1): 33-85 |
| [19] | Merle F, Rapha?l P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schr?dinger equation. Ann Math, 2005, 161(1): 157-222 |
| [20] | Ogawa T, Tsutsumi Y. Blow-up of $H^1$ solution for the nonlinear Schr?dinger equation. J Differential Equations, 1991, 92(2): 317-330 |
| [21] | Oh Y G. Cauchy problem and Ehrenfest's law of nonlinear Schr?dinger equations with potentials. J Differential Equations, 1989, 81(2): 255-274 |
| [22] | Ohta M. Strong instability of standing waves for nonlinear Schr?dinger equations with a partial confinement. Commun Pure Appl Anal, 2018, 17(4): 1671-1680 |
| [23] | Ohta M. Strong instability of standing waves for nonlinear Schr?dinger equations with harmonic potential. Funkcial Ekvac, 2018, 61(1): 135-143 |
| [24] | Pan J J, Zhang J. Mass concentration for nonlinear Schr?dinger equation with partial confinement. J Math Anal Appl, 2020, 481(2): 123484 |
| [25] | Pang P Y H, Tang H Y, Wang Y D. Blow-up solutions of inhomogeneous nonlinear Schr?dinger equations. Calculus Var Partial Differ Equ, 2006, 26(2): 137-169 |
| [26] | Pitaevskii L, Stringari S. Bose-Einstein Condensation. International Series of Monographs on Physics, 116. Oxford: Oxford University Press, 2003 |
| [27] | Shu J, Zhang J. Sharp criterion of global existence for a class of nonlinear Schr?dinger equation with critical exponent. Applied Mathematics and Computation, 2006, 182(2) : 1482-1487 |
| [28] | Shu J, Zhang J. Sharp criterion of global existence for nonlinear Schr?dinger equation with a harmonic potential. Acta Mathematica Sinica, English Series, 2009, 25(4): 537-544 |
| [29] | Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55: 149-162 |
| [30] | Sulem C, Sulem P. The Nonlinear Schr?dinger Equation:Self-Focusing and Wave Collapse. New York: Springer-Verlag, 1999 |
| [31] | Weinstein M I. Nonlinear Schr?dinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567-576 |
| [32] | Weinstein M I. On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. Comm Partial Differential Equations, 1986, 11: 545-565 |
| [33] | Zhang J. Stability of attractive Bose-Einstein condensates. J Stat Phys, 2000, 101: 731-746 |
| [34] | Zhang J. Sharp threshold for blow-up and global existence in nonlinear Schr?dinger equations under a harmonic potential. Comm Partial Differential Equations, 2005, 30(10): 1429-1443 |
| [35] | Zhang J. Sharp threshold of global existence for nonlinear Schr?dinger equation with partial confinement. Nonlinear Anal, 2020, 196: 111832 |
| [36] | Zhang M Y, Ahmed M S. Sharp conditions of global existence for nonlinear Schr?dinger equation with a harmonic potential. Adv Nonlinear Anal, 2019, 9(1): 882-894 |
| [37] | Zhu S H, Zhang J, Li X G. Limiting profile of blow-up solutions for the Gross-Pitaevskii equation. Science China Mathematics, 2009, 52(5): 1017-1030 |