| [1] | Protter M H, Weinberger H F. Maximum Principles in Differential Equations. Englewood Cliffs: Prentice-Hall, 1967 | | [2] | Friedman A. Partial Differential Equation of Parabolic Type. Englewood Cliffs: Prentice-Hall, 1964 | | [3] | Akagi G, Melchionna S. Porous medium equation with a blow-up nonlinearity and a non-decreasing constraint. Nonlinear Differ Equ Appl, 2019, 26(2): Article 10 | | [4] | Anderson J R, Deng K. Global solvability for the porous medium equation with boundary flux governed by nonlinear memory. J Math Anal Appl, 2015, 423(2): 1183-1202 | | [5] | Andreu F, Mazón J M, Toledo J, Rossi J D. Porous medium equation with absorption and a nonlinear boundary condition. Nonlinear Anal TMA, 2002, 49(4): 541-563 | | [6] | Ding J T, Shen X H. Blow-up time estimates in porous medium equations with nonlinear boundary conditions. Z Angew Math Phys, 2018, 69(4): Article 99 | | [7] | Iagar R G, Sánchez A, Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction. J Differential Equations, 2021, 272: 560-605 | | [8] | Li F C, Xie C H. Global existence and blow-up for a nonlinear porous medium equation. Appl Math Lett, 2003, 16(2): 185-192 | | [9] | Liang Z L. Blow up rate for a porous medium equation with power nonlinearity. Nonlinear Anal TMA, 2010, 73(11): 3507-3512 | | [10] | Schaefer P W. Blow-up phenomena in some porous medium problems. Dynam Systems Appl, 2009, 18(1): 103-109 | | [11] | Tian H M, Zhang L L. Blow-up solution of a porous medium equation with nonlocal boundary conditions. Complexity, 2020, 2020: Article ID 9037287 | | [12] | Wang Z Y, Yin J X. Note on blow-up of solutions for a porous medium equation with convection and boundary flux. Colloq Math, 2012, 128(2): 223-228 | | [13] | Wu X L, Gao W J. Blow-up of the solution for a class of porous medium equation with positive initial energy. Acta Math Sci, 2013, 33B(4): 1024-1030 | | [14] | Zhou J. A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void. Appl Math Lett, 2014, 30: 6-11 | | [15] | Du L L. Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources. J Math Anal Appl, 2006, 324(1): 304-320 | | [16] | Lei P D, Zheng S N. Global and nonglobal weak solutions to a degenerate parabolic system. J Math Anal Appl, 2006, 324(1): 177-198 | | [17] | Li Y X, Gao W J, Han Y Z. Boundedness of global solutions for a porous medium system with moving localized sources. Nonlinear Anal TMA, 2010, 72(6): 3080-3090 | | [18] | Mu C L, Hu X G, Li Y H, Cui Z J. Blow-up and global existence for a coupled system of degenerate parabolic equations in a bounded domain. Acta Math Sci, 2007, 27B(1): 92-106 | | [19] | Mu C L, Su Y. Global existence and blow-up for a quasilinear degenerate parabolic system in a cylinder. Appl Math Lett, 2001, 14(6): 715-723 | | [20] | Quir${\rm \acute{o}}$s J D, Rossi J D. Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions. Indiana Univ Math J, 2001, 50(1): 629-654 | | [21] | Shen X H, Ding J T. Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions. Comput Math Appl, 2019, 77(12): 3250-3263 | | [22] | Wang Z J, Zhou Q A, Lou W Q. Critical exponents for porous medium systems coupled via nonlinear boundary flux. Nonlinear Anal TMA, 2009, 71(5/6): 2134-2140 | | [23] | Xia A Y, Fan M S, Li S. Blow-up and life span estimates for a class of nonlinear degenerate parabolic system with time-dependent coefficients. Acta Math Sci, 2017, 37B(4): 974-984 | | [24] | Payne L E, Philippin G A. Blow-up phenomena for a class of parabolic systems with time dependent coefficients. Appl Math, 2012, 3(4): 325-330 |
|